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Abstract Transient execution attacks on modern processors continue
to threaten security by stealing sensitive data from other processes run-
ning on the same CPU. A recent example is Downfall, which demon-
strated how microarchitecture leakage could reveal short AES keys. We
explore the possibility of leaking much longer keys for post-quantum
cryptography by combining Gather Data Sampling from Downfall with
Flush+Reload to mount a key recovery attack against static Kyber. We
reassemble private keys from fragments scattered within random noise
by exploiting patterns observed across multiple consecutive loads. The
whole attack runs in under 40 minutes with success rate between 60%
and 70%, no matter the Kyber security level used by the victim. This
underscores the implicit reliance of cryptographic algorithms on the un-
derlying microarchitecture for security.

Keywords: Micro-architecture security · Post-quantum cryptography ·
Key recovery · Kyber.

1 Introduction

Modern processor manufacturers have found numerous techniques to optimize
their designs to enhance speed and efficiency by exploiting caching mechanisms,
speculative and out-of-order execution. However, these optimizations have not
come without adversity. One notable vulnerability in modern CPUs involves side
channels, which enable attackers to exploit unintended ways to access data be-
yond security boundaries. Examples of side channels include variations in compu-
tation time, fluctuations in power consumption, and changes to the CPU cache.

One important attack vector to mount side-channel attacks is exploiting se-
curity issues in the underlying microarchitecture. Attacks such as Meltdown [4],
Spectre [3] and GoFetch [2] have abused aggressive processor optimizations to
steal sensitive data. Mitigating these attacks is hard, and may force users to
update their hardware. Alternatively, they can rely on software or firmware
workarounds which often disable optimizations, resulting in considerable per-
formance degradation. Downfall [5] is a recent entry in this class of attacks, now
targeting leakage through internal buffers.
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This paper explores the use of Gather Data Sampling (GDS) from Downfall
to steal private keys from implementations of post-quantum cryptography. Our
contributions are:

– We propose chaining methods to leak large memory buffers containing secret
data through multiple leakage samples collected through GDS. The secret
data spans a few hundred bytes, significantly exceeding typical symmetric
keys targeted in previous work.

– We weaponize GDS against a high-speed implementation of Kyber [1] in the
static setting, realizing in practice an impact hinted in the original Downfall
paper [5, §7.2].

In our threat model, the victim and attacker must run on the same physical
CPU core as sibling threads, or be context-switching on the same CPU thread.
This captures situations where multiple users can access the same machine and
thus might share a CPU core, for instance in multi-tenant clouds.

The remaining sections of the paper are organized as follows. Section 2 covers
background material in microarchitecture security and MDS attacks. Section 3
describes the Downfall attack, which we reproduce to some extent and for our
purposes in Section 4. Section 5 gives an overview of Kyber and explains in
detail how GDS from Downfall can be used to recover static Kyber keys from
microarchitecture leakage. We discuss experimental results in Section 6 and a
comparison with previous work in Section 7, concluding the paper in Section 8.

2 Preliminaries

Memory subsystem. CPUs often support multiple levels of cache between
the individual cores and the RAM, which serve to speed up memory access by
storing frequently or soon-to-be-used data. Individual cores typically have their
own caches (levels L1/L2), and the entire CPU might also have a cache level
shared among all cores (L3). When dealing with memory and data sizes on Intel
processors, important types are the 2-byte word, 4-byte double-word (DWORD),
and 8-byte quad-word (QWORD). Memory is often divided into blocks of size
64 bytes (cache lines). If a byte belonging to a block is accessed, the cache will
store the entire block. Since caches are small compared to memory, they can only
store a few blocks. This means that memory blocks compete for cache lines, and
structure is needed in the cache to optimize lookup time and hit rate.

Vector registers. Intel CPUs have a set of registers primarily used for Single-
Instruction Multiple-Data (SIMD) instructions, allowing to simultaneously com-
pute a given operation on multiple pieces of data, which is particularly beneficial
in optimizing arithmetic-intense software. Vector instructions come in several dif-
ferent sizes, but we will focus on the 256-bit ymm vector registers, which most
currently running Intel processors support as part of the AVX2/512 extensions.
These registers can be interpreted in different ways, such as holding 4 QWORDs
or 8 DWORDs, depending on the data size encoded in the instruction.
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Multithreading. Multiple threads may be executed on the same physical core
simultaneously. They share the same hardware, but architecturally they are iso-
lated from one another, and may only access their own addresses and registers.
Many modern processors support two virtual threads running on each physical
core, which appear as two separate cores for running software. This feature is
called Simultaneous Multi-Threading (SMT) and it improves the overall effi-
ciency by increasing the number of independent instructions in the pipeline.

Speculative Execution. CPU cores might choose to execute otherwise se-
quential instructions in parallel to gain a significant speedup. This can happen
during branching, where both branches might get executed before the condi-
tion is resolved, or by predicting data from an otherwise slow load operation,
and forwarding it to dependent instructions. The actual predictions might be
wrong, which can result in flushing incorrectly executed instructions, or the
need to re-execute some instructions with updated data. To maintain isolation,
it is important that incorrectly executed instructions do not become architec-
turally visible to the running software. However, as noted in Downfall and other
microarchitecture vulnerabilities, its side effects may still be observed.

Temporal Buffers. Individual CPU cores might use internal buffers to speed
up operations. When performing a read, if requested data is not present in the
cache, it might instead forward data from a buffer to dependent instructions
whilst waiting for the rest of the cache line. When performing a write, it might
store data in an internal buffer before committing it to the cache.

Transient execution environments. Instructions which have been specula-
tively executed are called transient instructions. These instructions are accessible
in the execution environment whilst the CPU has yet to resolve their validity
and possibly flush them. The duration in which the transient data might be
accessible is called the transient window, which can be increased by provoking
cache misses or other micro-architectural effects.

Exploiting cache timings. Caches might enable covert- or side-channel at-
tacks, since the time difference between a cache-hit and a cache-miss is often
measurable. Using this together with the ability to flush cache lines often pro-
vides an easy mechanism for leaking transient data by encoding it to one of many
cache lines. An example of this is seen in Flush+Reload [9], where an attacking
thread monitors memory accesses of a victim thread through shared memory
pages (e.g. when using standard libraries).

MDS attacks. Microarchitecture Data Sampling (MDS) attacks collect and
leak confidential in-flight data from internal CPU buffers across security bound-
aries. This comes in contrast to most microarchitecture attacks, which exploit
speculative execution and/or target data from the CPU caches.
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Two recent examples of MDS attacks are RIDL [7] and Zombieload [8]. Rogue
In-Flight Data Load (RIDL) is a data speculation attack that carefully crafts a
speculative load to an address that the CPU is not prepared to handle (as in a
page fault), ultimately triggering the CPU into pulling data from internal buffers,
which can then be detected using Flush+Reload. In the cross-process setting,
RIDL requires some bytes to be known in advance, such that a mask-sub-rotate
technique can be used to leak only values consistent with previous knowledge
or observations. The attack reported in the original paper is quite inefficient,
recovering a total of 26 characters from the sensitive /etc/shadow file in 24
hours. ZombieLoad exploits faulting load instructions to transiently compute
on values belonging to previous memory operations in the current or sibling
thread, allowing them to be recovered. For short cryptographic keys that are
entirely available in the transient window, additional redundant data (domino
bytes composed of nibbles of different bytes) can be transmitted to recover a
16-byte AES key across processes in just 10 seconds.

Even if those attacks are considered to be quite poweftul, being applicable
to recover secrets in a number of scenarios involving SGX and MDS-resistant
hardware, it is not clear how they can be used to efficiencly leak much longer
keys that do not fit a single transient domain.

3 Downfall

Downfall [5] is a series of attacks which exploit the use of temporal buffers in
Intel processors. It is observed that these buffers can be shared by several pro-
cesses running on the same physical core, where some specific buffers reside. For
example, vector instructions frequently use these buffers to optimize load times
and data processing. When a process uses vector operations, the data in the vec-
tor registers potentially goes through a temporal buffer to optimize performance.

Gather Data Sampling (GDS). The main attack presented in Downfall
achieves the goal of acquiring data inside a transient window, which should not
usually be accessible, by using the x86 assembly instruction gather. Afterwards,
it seeks to transmit the data using a covert channel, hoping it becomes visible
after the transient window has closed. The gather instruction accesses scattered
data (DWORDs or QWORDs) in memory efficiently and loads it into a vector
register. This is done using a base pointer, a vector register with offsets from
that base pointer, and a mask to potentially ignore some of the loads.

For this instruction to be faster than just multiple loads in a row, some opti-
mizations have been made. One such optimizations is using a temporal buffer to
store the bits needed for gather so for example if the process gets interrupted,
the already loaded bits can be preserved and easily retrieved. Downfall shows
that this buffer might leak data between threads when they run on the same
core. This leaked data may come from a victim thread that populates a shared
temporal buffer, the Vector Physical Register File. An attacking thread can then
perform a faulting gather on, e.g., uncacheable memory, which might cause the
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CPU to transiently forward data from the temporal buffer to dependent instruc-
tions. GDS is exemplified in Listing 1.1, where a transient window is created,
followed by executing a faulting gather, which might end up acquiring data from
the victim thread. This version is heavily based on Downfall [5, Listing 2], and
a modified version of the proof-of-concept code 1.

Listing 1.1. Gather Data Sampling.
1 # Wipe out noisy values
2 .rept 32 # Repeat 32 times
3 inc %rax
4 vmovups (%rdi), %ymm3
5 .endr
6 vpxor %ymm1, %ymm1, %ymm1 # Zero index vector
7 vpcmpeqb %ymm2, %ymm2, %ymm2 # Ones mask vector
8 vmovups (%rdi), %ymm3 # Load word permutation
9 vpxor %ymm4, %ymm4, %ymm4 # Zero output vector

10
11 # Step 1: Increase transient window
12 # Done using a cache miss and a page fault
13 lea known_address , %rdi
14 clflush (%rdi)
15 mov (%rdi), %rax
16 xchg %rax, 0(%rdi)
17 mov $0, %rdi
18 mov (%rdi), %rax
19
20 # Step 2: Gather with a fault
21 mov $0, %r13
22 vpgatherqq %ymm2, 0(%r13, %ymm1, 1), %ymm4
23
24 # Step 3: Permute and encode to cache
25 vpermq %ymm4, %ymm3, %ymm4 # Permute ymm4
26 encode_ymm4 # Macro for encoding ymm4

When the CPU attempts to flush the faulting gather instruction, it realises it
forwarded the wrong data, and now has to erase all traces of the transient instruc-
tions accordingly. This means the transient data cannot be stored in memory,
instead it must be transmitted using a covert channel. For this purpose, a simple
Flush+Reload is used.

Cache as a covert channel. To leak 1 byte of transient data, the attacking
thread can allocate an array of size 256 x 4096 bytes, or one memory page for
each possible value. During a run of GDS where the program might access a
transient byte, it makes a memory lookup into exactly one page based on the
transient value, which is now the only page in cache. After the transient window
closes, the program can then Flush+Reload all pages and infer the byte based
on which page is cached. This approach can be scaled according to how many
transient bytes are accessible, by simply making another 256 pages for each byte,
and leaking them in order. An example for 1 byte can be seen in Listing 1.2.

1 https://github.com/flowyroll/downfall/blob/main/POC/gds_aes_ni/asm.S

https://github.com/flowyroll/downfall/blob/main/POC/gds_aes_ni/asm.S


6 Constantin-Sukul, Gammelgaard, Henriksen, Aranha

Listing 1.2. Cache as a covert channel.
1 int CACHE_MISS = 230; // Setup threshold for cache misses
2 char oracle[256 * 4096]; // Initialise oracle of 256 pages
3
4 // A transient window is made and gather is called
5 ...
6 // Load one page based on transient byte from gather
7 oracle[transientByte * 4096];
8 // Flush+Reload checking the first byte in each page for a hit
9 for (int i = 0; i < 256; i++)

10 int reloadTime = flush_reload_t(oracle[i * 4096]);
11 if (reloadTime < CACHE_MISS)
12 printf("Successfully got byte %i", i);

The array is indexed in strides of pages to avoid the prefetcher, which works
on data within the same page [4]. If performed within a single page, cache hits
on consecutive bytes would be observed, and then provoke false positive hits.

4 Reproducing Downfall

Our first task was finding a vulnerable CPU and attempting to minimally re-
produce the results in the Downfall paper, as to achieve sufficient conditions to
proceed with the attack. We initially performed some experiments using known
data to see which settings we should apply to GDS to leak efficiently in our setup.
This was done using modified versions of the code provided in the repository2.
We were mainly interested in figuring out for our specific machine:
– Which victim-side vulnerable instructions leak consistently?
– Which attacker-side gather leaks consistently?
– Which victim-attacker setup leaks the most?

A simplified version of the attacker’s code using various gather instructions can
be found in our repository. For the victim, we simply made it repeatedly load
known data using different vmov or vpgather instructions.

4.1 Initial results

We choose to run attack and victim code in two different processes, where the
victim runs as the main process on a core, and the attacker as a sibling thread
on the same core. This proved to leak more consistently than running on the
same logical core and relying on context-switches. Table 1 presents the results.
For what instructions proved most to leak the most consistent, we found that
vpgatherqq was the instruction leaking the most for the attacker, while vmov
instructions leaked the most for the victim among the evaluated instructions.
Furthermore, we found that we were able to consistently leak up to 12 consecutive
bytes, and at a rate of about 100 entries/second. For unknown reasons, we were
not able to leak up to 22 bytes, as originally claimed in the Downfall paper.

2 https://github.com/flowyroll/downfall/tree/main/POC/gds_test

https://github.com/flowyroll/downfall/tree/main/POC/gds_test
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Table 1. Combinations of victim/attacker instructions and their hits in Downfall leak-
age, measured in correct QWORDs leaked per second.

Victim Attacker Result

vpgatherdd vpgatherqq 30
vpgatherqq vpgatherqq 15
vmovdqa vpgatherqq 105
vmovdqu vpgatherqq 120
vmovdqu vpgatherdd 90
vmovups vpgatherqq 100

An example of leaked data in 8-byte segments can be seen in Listing 1.3.
We choose to split the leaks based on their QWORD index into the loaded ymm
register, In the example, the victim code repeatedly loads one ymm register of
known data, represented in hexidecimal as 30313233...4c4d4e4f. The attacker
executes GDS and repeatedly rotates the transient data using VPERMQ to access
all QWORDs, which are then sorted into Q1-Q4 by index. We call each line in
the leak a segment, and the number after the leaked data is the number of hits
that particular segment received. Leakage of 12-byte segments looked similarly,
with the extra 4-bytes from one index (e.g. Q1) almost always being found in
the subsequent one (Q2).

Listing 1.3. Example leak of 8-byte segments in hexadecimal representation.

Q1 Q3
00 3031323334353637 475 00 4041424344454647 681
01 aaaaaaaaaaaaaaaa 38 01 415bc77b1c8dfeff 54
02 e1ffffffffffffff 49 02 ffffffffffffffff 45

Q2 Q4
00 0b93ac4623f8ffff 46 00 48494a4b4c4d4e4f 666
01 38393a3b3c3d3e3f 492 01 ffffffffffffffff 58
02 70f8ffffffffffff 42
03 aaaaaaaaaaaaaaaa 25

In general, the leaked data is easily distinguished from most noise, and re-
assembling an entire ymm register by brute force is feasible. This is analogous
to the Downfall attack against AES, where the keys are short enough to fit in
one ymm register. However, if the leaked data cannot fit in a single ymm register,
this simple attack does not provide a way to reassemble the data correctly. For
example, if the data is contained in four ymm registers, there would be four dif-
ferent 8-12 byte segments in each of Q1-Q4 with many hits, and one would have
to try every single combination of recovering four ymm registers based on them.
Even for relatively few ymm registers, this would quickly prove to be infeasible,
even though it can be performed offline during post-processing after initially
leaking data. This lead to further experiments with the victim running several
consecutive loads.
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4.2 Finding natural patterns in the leakage

The next step was observing the patterns in leaked data across consecutive loads.
When observing 12-byte segments, a lot of hits where consistently in the first
8 bytes of a register (e.g. Q1 in ymm1), and then the last 4 bytes were from a
different register (e.g. Q2 in ymm2). We refer to this data pattern as a link in a
chain. A simplified example with two consecutive loads can be found in Listing
1.4, illustrating the splitting pattern of 8 and 4-byte segments.

Listing 1.4. Example of leakage with chains.
1 # ymm1 = AAAABBBBCCCC... ymm2 = 111122223333...
2 # An example of how 2 consecutive loads could chain together
3 # Simplified for the sake of clarity. Written as bytes, not hexadecimal
4 Q1 Q3
5 AAAABBBB3333 EEEEFFFF7777
6 11112222CCCC 55556666GGGG
7 Q2 Q4
8 CCCCDDDD5555 GGGGHHHH1111
9 33334444EEEE 77778888AAAA

When running just the simple victim and attacker, these patterns proved to
consistently appear when the victim performed several loads in a row. Further-
more, if the victim executed the same amount of loads across different runs, the
patterns would always be the same. The patterns also did not seem to appear
in any of the noise, meaning the only 32-byte long chains were indeed from the
data intended to leak. As it can be seen from the example, the two chains do
not exactly correspond to the two ymm registers which were loaded, but in this
simple case the original registers can easily be extracted once the pattern formed
by the chains is known.

Reassembling multiple ymm registers worth of data into their original order
becomes feasible by first collecting the leakage from consecutive loads, observing
the chains, and then fitting the data to the specific observed patterns. This was
observed to be consistent across different amounts of loads, and did not require
any modification or prior knowledge about the data itself. However, the order in
which the ymm registers were loaded is not preserved and needs to be recovered
by other means.

5 Attacking Kyber with MDS

In this section, we use the Downfall exploit to steal private keys from a high-
speed implementation of secure post-quantum cryptography. We have chosen
Kyber as a target since it was recently standardized by NIST under the name
ML-KEM [6]. The attack assumes that a static version of Kyber is used, such
that one key pair will be generated and used to encrypt and decrypt multiple
times. This is a realistic use in cryptographic protocols where both parties cannot
be present simultaneously to execute key exchange (i.e. e-mail encryption) and
in setups where you do not want to generate new keys each time.

The attack has an online and an offline phases. The online phase corresponds
to leaking temporal buffers with GDS, and the offline phase corresponds to
generating and testing candidate private keys until a proper match is found.
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5.1 An overview of Kyber

Kyber is a family of post-quantum key-encapsulation mechanisms (KEM) based
on hardness assumptions over lattices. It allows two parties to establish a session
key to encrypt follow-up communication, coming with standard algorithms such
as KeyGen, Encrypt, Decrypt, Encapsulate, and Decapsulate. The latter two
algorithms provide chosen-ciphertext security (CCA), and rely on inner chosen-
plaintext-secure (CPA) algorithms through the Fujisaki-Okamoto transform.

Our attack targets the inner decryption procedure, which takes as input the
private key sk. Private keys take 768, 1152 and 1536 bytes, depending on the
standardized security level (respectively Light, Standard, and Paranoid). We
stress that these key lengths are much longer than symmetric keys leaked in pre-
vious work, thus using the simple GDS attack would make reassembling the key
significantly time-consuming. Since Kyber performs dense arithmetic over poly-
nomials, optimized implementations may also employ vectorized instructions.
The reference Kyber code contains such an implementation, accelerated with
AVX2 instructions, which we target in the following sections.

5.2 Vulnerable code

Vulnerable instructions that handle part of the private key can be found in the
Decrypt operation from the inner CPA portion, implemented in the function
indcpa_dec. The vulnerable part was the sequence of instructions unpacking
and loading the private key sk into vector registers. A simplified version of the
call stack can be seen in Listings 1.5 and 1.6 below.

Listing 1.5. Simplified call stack for decryption.
1 void indcpa_dec(uint8_t *m, const uint8_t *c, const uint8_t *sk) {
2 polyvec b, skpv;
3 poly v, mp;
4 unpack_ciphertext(&b, &v, c);
5 unpack_sk(&skpv, sk); // Unpacking the sk
6 ...
7 }
8 static void unpack_sk(polyvec *sk, const uint8_t *packedsk) {
9 polyvec_frombytes(sk, packedsk);

10 }
11 void polyvec_frombytes(polyvec *r, const uint8_t *a) {
12 for(unsigned int i = 0; i < KYBER_K; i++)
13 poly_frombytes(&r->vec[i], a+i*KYBER_POLYBYTES);
14 }
15 void poly_frombytes(poly *r, const uint8_t *a) {
16 nttfrombytes_avx(r->vec, a, qdata.vec);
17 }

From Listing 1.6, the entire private key is loaded using 6 ymm registers at
a time, which will be referred as blocks. For the Light, Standard or Paranoid
security levels the private key will be split into 4, 6, or 8 blocks respectively.
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Listing 1.6. Simplified excerpt from shuffle.S to unpack/load a private key.
1 nttfrombytes_avx:
2 vmovdqa 112*2(%rdx),%ymm0
3 call nttfrombytes128_avx
4 add $256,%rdi
5 add $192,%rsi
6 call nttfrombytes128_avx
7 ret
8
9 nttfrombytes128_avx:

10 #load %rsi index into sk
11 vmovdqu (%rsi),%ymm1
12 vmovdqu 32(%rsi),%ymm2
13 vmovdqu 64(%rsi),%ymm3
14 vmovdqu 96(%rsi),%ymm4
15 vmovdqu 128(%rsi),%ymm5
16 vmovdqu 160(%rsi),%ymm6
17 ...

In our setting, the victim process generates a static private key at some
security level and then repeatedly decrypts random messages. Initial experiments
showed that one could not clearly distinguish parts of the key from noise by just
counting the number of hits, which was the case in the Downfall experiments
explained in Section 4. We hypothesize that this was caused by the fact that the
victim now runs many other vector instructions for arithmetic, some of which
are also vulnerable to GDS, and thus may populate the temporal buffer with
additional noise during the attack.

Moreover, without making use of the patterns found from consecutive loads,
in the best case with Light security we would expect 24 leaked segments in each of
the Q1-Q4 groups. Having to assemble by brute force all possible combinations
of leaked data would lead to (24!)4 ≈ 2316 combinations corresponding to all
permutations, which would not be feasible for the offline phase of the attack.
Hence, being able to exploit leakage patterns corresponding to blocks is critical
for reducing the number of permutations and thus the feasibility of the offline
phase.

5.3 Using leakage patterns to recover the key

When leaking 12-byte segments from Kyber, we again observed patterns simi-
lar to our pure Downfall experiments. It also became clear that just permuting
over QWORDs when running the attack was not sufficient with respect to re-
assembling an entire private key. As discussed in Section 4.2, it was possible to
recover the ymm registers in the simple case, but not their order. This means
that reassembling an entire private key from blocks would require to check all
combinations of permutations of registers and blocks, which could quickly make
the offline phase infeasible. Another limitation was that chains consisting of
more than two consecutive loads often skip entire QWORDs, preventing them
from being part of the chain. They would still appear as 8-byte segments, just
not as 12-byte links. The specific leakage pattern observed for our target Kyber
implementation can be seen in Figure 1.

The obstacle motivated another attack to be executed at the same time,
which consists in permuting instead based on DWORD indexes using vpermd
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and gathered using vpgatherdd. This once again produced patterns containing
chains, but instead of 8-4 byte links between QWORD of the key (Q-chain),
we saw 4-4-4 byte links between DWORDS of the key (D-chain). Listing 1.7
exemplifies this, where mapQ is leakage on QWORDs, and mapD on DWORDs.
Note both attackers need to run in the same core as sibling threads, introducing
a risk of increasing noise, but which did not affect our results.

Listing 1.7. Sample chains in mapQ compared to mapD.

1 # ymm1 = AAAABBBBCCCC... ymm2 = 111122223333...
2 # An example of how consecutive 2 loads could chain together
3 # Simplified for the sake of clarity, written in byte representation (not hex)
4 # mapQ # mapD
5 Q1 D1
6 AAAABBBB3333 AAAA2222CCCC
7 11112222CCCC 1111BBBB3333
8 Q2 D2
9 CCCCDDDD5555 BBBB3333DDDD

10 33334444EEEE 2222CCCC4444
11 Q3 D3
12 EEEEFFFF7777 CCCC4444EEEE
13 55556666GGGG 3333DDDD5555
14 Q4 ...
15 GGGGHHHH1111 D8
16 77778888AAAA HHHH1111BBBB
17 8888AAAA2222

Combining both sources of leakage fixed both of the limitations. It immedi-
ately fixed the problem of some QWORDs not appearing as a link in a chain as
seen in Figure 1, since half of the missing QWORD would now appear as part
of a link in a D-chain. Whilst this immediately only provides half of the missing
data, fortunately the entire missing QWORD appears as a 8-byte segment in
mapQ. This means the missing half of the QWORD can simply be looked up.

Figure 1. Block of 6 ymm registers with DWORDs coloured to show both Q-chains
and D-chains observed in our leaks. On the left, the five Q-chains are coloured in, and
on the right the five D-chains. In white are the QWORDs & DWORDs which do not
appear in a chain, but whose patterns ends up looking like a chain.
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The problem of ordering the newly constructed ymm registers within a block
also gets adressed. We see that it is always the 1st and 3rd QWORD of ymm3, and
2nd and 4th QWORD of ymm4 which are not part of a chain. After reconstructing
ymm4, one can simply traverse the Q-chain starting from ymm4, and the order of
the other ymm registers becomes clear.

In detail, the reassembly procedure starts by identifying ymm4. This can be
done by finding a Q-chain involving q1 = d1|d2, where d1 is in some D-chain, but
d2 is not. By following the yellow D-chain involving d1 from Figure 2, values d1,
d3, d5, and d7 of ymm4 can be obtained. The remaining values d2, d4, d6, and d8
of ymm4 can be learned by performing lookups in mapQ for 8/12-byte segments
that start with d1, d3, d5 and d7, recovering the full ymm4 register.

Figure 2. The order we assemble the ymm registers into blocks. D-chains are coloured.
Lines link DWORDs that appear together as QWORDs in mapQ.

Since ymm4 shares the yellow D-chain with ymm1, half the bytes of ymm1 can
be obtained, namely d2, d4, d6, and d8. The procedure continues by looking for
a Q-chain where q1 = X|d2 and q3 = Y |d6 to learn d1 = X and d5 = Y . From
the blue D-chain that d1 and d5 appear in, values d3 and d7 can be obtained,
now recovering the entire ymm1 register.

We repeat the process for ymm5, ymm2, and ymm6 to obtain the red, green,
and turquoise D-chains. For the remaining d1, d3, d5 and d7 in ymm3, a lookup
is performed in mapQ to find 8/12-byte segments that end with d2, d4, d6, and
d8 from the turquoise D-chain. A final validation check is performed for ymm3,
such that a D-chain involving its d1, d3, d5 or d7 does not exist, to ensure that
this is a valid candidate for ymm3.

5.4 Implementation and optimization

We implemented the reassembly of candidate private keys in Python, using the
ideas from the previous subsection. Moreover, we also optimize the number of
blocks and reduce the number of permutations of blocks that could be valid
private keys.
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Filtering. Leakage data contains easily identifiable noise that can be filtered
out, such as repetitions of the same bytes (as in FFFFA1FF...). Since the private
key is randomly sampled, the segments with many repeated bytes can be filtered
out to reduce the number of potential chains. Other examples of recurrent noise
were identified by running the attack multiple times using different pairs of keys
and messages and looking for common segments. The reasoning is that these
segments would not be dependent on the key but instead generated every time,
e.g. by vulnerable instructions using hardcoded constants.

Gaps in chains. Some parts of the private key might appear only in 8-byte
segments if the attack has not run for long enough. Several 12-byte segments are
needed to construct the chains, but it might still be contructed in the presence
of missing links. For each Q-chain, exactly one missing 12-byte link can be
tolerated, since we do not need the chain to loop around itself. We still need
the missing link to appear as an 8-byte segment, but do not require the trailing
DWORD that leads back to the start of the chain.

Even more missing links can be tolerated for each D-chain. We observe that
each DWORD can appear three times in mapD, potentially as the first, middle, or
last DWORD of some 12-byte segment. This means we can tolerate that either
several gaps of one missing link or one gap of two missing links in a row for each
D-chain. There is enough overlap to connect the links on either side when one
link is missing. If we observe d1|d2|d3 and d3|d4|d5, but d2|d3|d4 is missing, then
we can jump the gap and still find the entire chain. We cannot extend the chain
further for a gap of two missing links but can tolerate it at the end of the chain,
analogous to the problem seen with Q-chains.

When assembling both Q- and D-chains, we attempt to construct chains
starting in every map and rotate the found chains to always begin with elements
from the first map. This ensures that even if a gap exists in the middle of a
chain, the rotation will be attempted where the gap is at the end. This resulted
in reduced running time since some missing 12-byte segments can be tolerated.

Verifying blocks. When reconstructing the blocks, we used every correct D-
chain, but only some of the correct Q-chains. We assume all the correct Q-chains
are present in the leak and use them for verification. Since we know the entire
structure of a block, we can infer what Q-chains that block should have produced
in the leak. We assume the block is invalid if any of these chains are missing in
our found Q-chains. This is a trade-off that makes our runtime slightly longer
but filters out several incorrect blocks.

Usually, some of the blocks we now produce will be similar, deviating only by
some flipped bits 3. We observed that for the valid blocks that will be part of the
private key, the flipped bits will be in ymm3 and/or ymm4. This is because some
of these bits do not appear in the Q-chains, which we use to validate. Because
of this, we decided to group blocks based on their first QWORD. Then we only

3 We could not determine the reason for this effect.
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need to attempt the permutations where we take at most one block from each
group, under the assumption no two almost identical blocks can appear in the
same private key.

Complexity. Since we now (theoretically) know the entire blocks in full, all
we have to do is brute force the order of the blocks. If we assume all blocks are
correct, the complexity of this process for Paranoid security becomes 8! ≈ 216. In
practice, when running the online phase long enough and the offline phase with
the aforementioned optimizations, we never saw more than twice the expected
amount of blocks. This means, even for Paranoid, we only expect to check 16!

8! ≈
229 different permutations in the worst case.

Checking the candidate private keys. To finalise the attack, we also had
to verify that we could find and reassemble the correct private key among the
candidates within a feasible time span. This is performed by generating messages,
encrypting them using the public key, and attempting to decrypt the ciphertext
to check if the original message is returned.

6 Experimental results

The complete attack code can be found in our repository 4. The initial Downfall
experiments can be found inside the AllTests folder. The data corresponding
to GDS attacks against Kyber can be found in KyberAttack folder. The exper-
iments were executed on a laptop with an i5-11300H CPU, microcode version
0x86. This CPU model was released before Intel released their patches for GDS.
We employed Ubuntu 22.04.3 LTS running kernel version 5.15.146.1-2, within
WSL version 2.1.5.0. The virtual machine had access to 2 logical cores, 0 and 1,
with both located on the same physical core.

We tested the attack for each of the security levels Light, Standard, and
Paranoid, since they all require private keys of different lengths, which incur
increasing difficulties for the attacker. For each of the security levels, a total of 10
key pairs were tested. All results were run with the attackers compiled using -03
optimization, seeing as this gave better throughput. Our methodology consisted
of starting the victim process and increasing the time allowed to the attacker by
intervals of 5 minutes until the private key could be fully recovered, with a cut-
off point at the success rate of 60%. Table 2 contains the experimental results,
consisting of the time needed to obtain at least 60% success rate in 10 attempts
to recover a full Kyber private key at a certain security level. Furthermore, we
note that there was partial success in the failed attempts, with only one or two
blocks missing. The offline phase to check candidates by testing permutations ran
almost instantaneously in all cases, given the optimizations described previously.

4 https://gitlab.au.dk/au685153/downfall-bachelor-project

https://gitlab.au.dk/au685153/downfall-bachelor-project
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Table 2. Overview of required running time for the different security levels. The success
rate is the fraction of 10 Kyber keys fully recovered in a given time limit.

Security Level Time Success Rate

Light 30 min 70%
Standard 35 min 70%
Paranoid 40 min 60%

7 Discussion

We compare our attack strategy with two other MDS attacks from the literature.
The RIDL cross-process attack assumes the attacker already knows some part

of the data it attempts to leak, such as the string root: in the /etc/shadow file.
This is not possible in our case, since no information about the private key is
known a priori. Reassembling the key using the mask-subtract-rotate technique
is thus not feasible, motivating our custom procedure based on cross-referencing
Q-chains and D-chains.

ZombieLoad relies on the fact that the entire key may be present in the
transient domain, which means the first 16 bytes leaked are from the key or
unrelated noise. Since only one byte is leaked at a time at any index, the attacker
can choose between leaking an entire byte of the key or the domino between two
bytes of the key for checking correctness.

In our case, it is not clear how to create domino bytes efficiently, because we
only obtain a low volume of correct 8- to 12-byte leaks serving as links. Perhaps
it is possible using the DWORD setup with vpgatherdd and vpermd, with the
domino bytes contained within 8-byte leaks. While it might end up helping
optimizing the attack, it would still not help with reassembling the ymm registers
within a block in the right order, since the missing QWORDS are used for this.
A working combination would thus require 8-byte DWORD links cross-reference
with QWORDs from vpgatherqq, so both attacks would still be required, but
not having to handle 12-byte leaks would make the online phase simpler.

Another important difference in the comparison with ZombieLoad is that
our attack is less active, not having to craft and transmit domino bytes, but just
monitoring GDS leakage until enough blocks of the private key can be found.
Our attack also does not require the whole key to be present at the same time,
being capable of chaining different segments found across many iterations of
the attack. At a higher level, both attacks are essentially exploiting redundancy
at different granularities, overlapping nibbles in the case of ZombieLoad; and
chaining patterns in our cross-referencing approach.

In terms of performance, our attack takes a long time to complete, even
considering the much longer keys it targets. The main reason behind this is the
amount of noise from vector arithmetic instructions in Kyber, and polluting the
internal buffers. However, we do not consider that a strong limitation in the
static setting. It is unclear if other MDS attacks would perform better under the
constraints considered in our paper.
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8 Conclusion

We presented a key recovery attack against Kyber in the static setting. By
weaponizing GDS from Downfall, we were able to fully recover Kyber keys from
microarchitecture leakage with success rate between 60% and 70% in under 40
minutes for all security levels. The main idea consists in running two GDS at-
tackers at different granularities, and cross-referencing fragments of the key until
good candidates and a proper match can be found. In comparison to previous
work, the proposed attack is able to leak much longer keys in an entirely passive
manner by just observing GDS leakage across a long time interval. This naturally
comes at the cost of performance.

Future work in this direction could involve attempting different MDS attacks
against Kyber or optimized versions of the attack that are more aggressive, such
as adapting the idea of transmitting domino bytes to our setting. We expect
that our attack can also be effective against other quantum-safe cryptographic
algorithms with longer private keys.
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