
Poster: Systematic Evaluation of Automated
Tools for Side-Channel Vulnerability Detection

in Cryptographic Libraries

Antoine Geimer1,2, Mathéo Vergnolle3, Frédéric Recoules3, Lesly-Ann Daniel4,
Sébastien Bardin3, and Clémentine Maurice1

1 Univ. Lille, CNRS, Inria
2 Univ. Rennes, CNRS, IRISA

3 Université Paris-Saclay, CEA, List
4 KU Leuven, imec-DistriNet

1 Introduction∗

Side-channel attacks exploit the physical effects of a program’s execution, re-
constructing secret data from observations such as power consumption or in
the case of microarchitectural side-channels, execution time and cache accesses.
Numerous solutions have been proposed to mitigate these attacks. For microar-
chitectural attacks, the most commonly deployed in cryptographic libraries is
the constant-time programming discipline [4,3], where developers must avoid
branches, memory accesses that depends on secret values. In practice however,
constant-time programming can result in complex code, harder to both under-
stand and maintain. Various side-channel detection frameworks [6,2,13,16,22],
have thus been proposed to help developers abide this principle. Despite this,
past research has shown that many side-channels vulnerabilities can still be
found in libraries, often manually [14]. Two factors could explain this paradox:
either developers do not use these tools, or these tools are unable to find these
vulnerabilities. While a recent survey by Jancar et al. [12] suggests that the
former is often true, the latter possibility remains unexplored.

We explore this question by providing a thorough state-of-the-art of side-
channel detection tools and of recent vulnerabilities, answering the following
research questions:

RQ1 How to compare these frameworks, as their respective publications offer
differing evaluation?

RQ2 Could an existing framework have detected these vulnerabilities found
manually?

RQ3 What features might be missing from existing frameworks to find these
vulnerabilities?

∗This extended abstract is an abridged version of previously published works [8]
and describes additional preliminary results included in the poster.



2 Geimer et al.

Contributions Our contributions are as follows:

1. We present a multi-criterion qualitative classification of 34 side-channel vul-
nerability detection tools;

2. We compare a subset of these frameworks on a unified benchmark, comprised
of representative cryptographic operations;

3. We give a classification of recently published side-channel vulnerabilities,
offering new insights into where to find potential vulnerabilities;

4. We verify whether 4 of these vulnerabilities could have been detected with
the aforementioned frameworks, issuing recommendations to the community
to improve the state-of-the-art.

Additional results In addition, we present preliminary results on the impact of
compiler optimizations on constant-time source code. While it has been known
for a while that compilers can introduce constant-time violations [18,17], our
results bring nuance to the question by relating vulnerable instructions to their
corresponding source code lines. We also give details on how particular combina-
tions of optimizations break constant-time. We find for example instances where
complex interactions between function inlining, arithmetic simplifications and
loop unswitching introduce secret-dependent branches.

2 Framework classification

Criteria Our classification is structured in two broad categories of tools, static
and dynamic, the former being geared towards formal verification and the latter
towards bug-finding. For each tool we also detail the methods employed by the
authors (e.g., symbolic execution, fuzzing). Our classification is enriched with the
type of inputs used by the analysis (e.g., C source, binaries), and the information
outputted: estimation on the number of bits leaked, origin of the leakage, and
whether a witness triggering the vulnerability is given. Other criteria include
whether the analysis has a soundness claim, whether blinding is supported, and
finally an approximate estimation of the analysis’ scalability is provided.

Insights Dynamic approaches have become more popular since 2017, represent-
ing a shift in research communities and a focus on more scalable bug-finding ap-
proaches. We note that this advantage mainly holds for single-trace approaches,
as approaches based on trace comparison can require a time-consuming acqui-
sition phase. Single-trace approaches lack coverage, but could be supplemented
with fuzzing. We also note that static and dynamic symbolic execution has be-
come a popular approach, with advances in SMT solving making it practical for
side-channel detection.

3 Vulnerability classification

Criteria We classify recent (2017-2022) side-channel vulnerabilities in two
broad categories: known and new vulnerabilities. Known vulnerabilities can



Systematic Evaluation of Tools for Side-Channel Vulnerability Detection 3

resurface for two reasons: when known-vulnerable functions are used in new
contexts, or in new libraries. In the first case, developers keep vulnerable func-
tions in the code-base for performance reasons, carefully avoiding using them
when manipulating secret data. This leaves the door open to new vulnerabilities
where these known-vulnerable functions are used in a new context (e.g., using
square-and-multiply in RSA key generation) [20,21,1,7,5]. In the second case, the
lack of developer awareness may prevent side-channel mitigation transfer from
one library to the other [11].

Insights The majority of recent publications reproduce vulnerabilities which
have been long known. Analysis should not simply focus on detecting CT viola-
tions in their code, but rather detect their incorrect use in the wider code-base.
Test methodologies like TriggerFlow [10] are promising in this regard, and com-
plementing them with fuzzing approaches could allow for wider exploration of
libraries. New vulnerabilities are not found in usual cryptographic primitives
directly, but in newer protocols/schemes [19,15], or in lower-level utility func-
tions [9]. Detection tools thus need to be able to fully analyze programs, including
utility functions, and scale to full protocol runs.

4 Unified benchmark and case-study

Unified benchmark To fairly compare the scalability and vulnerabilities re-
ported by existing approaches (RQ1), we create a unified benchmark, comprised
of representative cryptographic operations from 3 libraries, totaling 25 bench-
marks. We run this benchmark on a subset of side-channel detection tools: Aba-
cus [2], Binsec/Rel [6], Microwalk-CI [22], dudect [16], and ct-grind [13].

Case-study We use these tools to determine if the vulnerabilities in our classi-
fication could have been discovered automatically (RQ2) to determine features
that are missing from the state-of-the-art (RQ3). We target vulnerabilities from
three publications, two stemming from functions known to be vulnerable used
in a new context [1,7] and one representing a new vulnerability [9].

Insights Our benchmark and case-studies reveal that scalability remains an
issue for most tools, especially when analyzing asymmetric cryptography. We
also note that some tools can miss vulnerabilities because of a lack of support for
SIMD instructions which are often used to speed up operations. Lack of support
for internal secret generation (e.g., key generation) can cause vulnerabilities to
be missed. Finally the presence of implicit information flows in program can lead
to missed vulnerabilities.

References

1. Aldaya, A.C., Garćıa, C.P., Tapia, L.M.A., Brumley, B.B.: Cache-timing attacks
on RSA key generation. TCHES (2019)



4 Geimer et al.

2. Bao, Q., Wang, Z., Li, X., Larus, J.R., Wu, D.: Abacus: Precise side-channel anal-
ysis. In: ICSE (2021)

3. Barthe, G., Betarte, G., Campo, J.D., Luna, C.D., Pichardie, D.: System-level
non-interference for constant-time cryptography. In: CCS (2014)

4. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: LATINCRYPT (2012)

5. Braga, D.D.A., Fouque, P., Sabt, M.: PARASITE: password recovery attack against
srp implementations in the wild. In: CCS (2021)

6. Daniel, L., Bardin, S., Rezk, T.: Binsec/rel: Efficient relational symbolic execution
for constant-time at binary-level. In: S&P (2020)

7. Garćıa, C.P., ul Hassan, S., Tuveri, N., Gridin, I., Aldaya, A.C., Brumley, B.B.:
Certified side channels. In: USENIX Security (2020)

8. Geimer, A., Vergnolle, M., Recoules, F., Daniel, L., Bardin, S., Maurice, C.: A
systematic evaluation of automated tools for side-channel vulnerabilities detection
in cryptographic libraries. In: CCS (2023)

9. Genkin, D., Valenta, L., Yarom, Y.: May the fourth be with you: A microarchitec-
tural side channel attack on several real-world applications of curve25519. In: CCS
(2017)

10. Gridin, I., Garćıa, C.P., Tuveri, N., Brumley, B.B.: Triggerflow: Regression testing
by advanced execution path inspection. In: DIMVA (2019)

11. ul Hassan, S., Gridin, I., Delgado-Lozano, I.M., Garćıa, C.P., Chi-Domı́nguez, J.J.,
Aldaya, A.C., Brumley, B.B.: Déjà vu: Side-channel analysis of mozilla’s NSS. In:
CCS (2020)

12. Jancar, J., Fourné, M., Braga, D.D.A., Sabt, M., Schwabe, P., Barthe, G., Fouque,
P., Acar, Y.: ”they’re not that hard to mitigate”: What cryptographic library
developers think about timing attacks. In: S&P (2022)

13. Langley, A.: Ctgrind. https://www.imperialviolet.org/2010/04/01/ctgrind.

html (April 2010)
14. Lou, X., Zhang, T., Jiang, J., Zhang, Y.: A survey of microarchitectural side-

channel vulnerabilities, attacks, and defenses in cryptography. ACM Comput. Surv.
54(6), 122:1–122:37 (2022)

15. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: Attacking
strongswan’s implementation of post-quantum signatures. In: CCS (2017)

16. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
DATE (2017)

17. Schneider, M., Lain, D., Puddu, I., Dutly, N., Capkun, S.: Breaking bad: How
compilers break constant-time implementations. arXiv abs/2410.13489 (2024)

18. Simon, L., Chisnall, D., Anderson, R.J.: What you get is what you C: controlling
side effects in mainstream C compilers. In: EuroS&P (2018)

19. Tibouchi, M., Wallet, A.: One bit is all it takes: A devastating timing attack on
bliss’s non-constant time sign flips. J. Math. Cryptol. (2021)

20. Tuveri, N., ul Hassan, S., Garćıa, C.P., Brumley, B.B.: Side-channel analysis of
SM2: A late-stage featurization case study. In: ACSAC (2018)

21. Weiser, S., Spreitzer, R., Bodner, L.: Single trace attack against RSA key genera-
tion in intel SGX SSL. In: AsiaCCS (2018)

22. Wichelmann, J., Sieck, F., Pätschke, A., Eisenbarth, T.: Microwalk-ci: Practical
side-channel analysis for javascript applications. In: CCS (2022)


