
REFault: A Fault Injection Platform for
Rowhammer Research on DDR5 Memory

Stefan Gloor[0009−0002−0555−2210], Patrick Jattke[0000−0003−2574−907X], and
Kaveh Razavi[0000−0002−8588−7100]

Computer Security Group, ETH Zurich
{stgloor,pjattke,kaveh}@ethz.ch

Abstract. DDR5 is showing increased resistance to Rowhammer at-
tacks compared to previous generations. The minimum hammer count
(HCmin) is a metric to assess the susceptibility of the DRAM substrate to
Rowhammer. Due to the lack of a generic platform that allows disabling
refresh commands, there is currently no way to determine the HCmin

of DDR5 UDIMMs. We address this gap with REFault, a low-cost fault
injection system that allows altering DDR5 commands on-the-fly. RE-
Fault is made from a configurable DRAM fault injection interposer and a
custom-designed injection controller. We leverage REFault to temporar-
ily disable refresh commands on a commodity system, and determine,
for the first time, the HCmin of two DDR5 devices from major DRAM
manufacturers. We show that the HCmin is as low as 16 k activations
which has not improved compared to DDR4 devices. We conclude that
the increased resistance to Rowhammer in DDR5 devices comes from
improved mitigations rather than the DRAM substrate itself.

Keywords: Rowhammer · DDR5 · DRAM · Fault Injection.

1 Introduction

Since the initial discovery of Rowhammer in 2012 on DDR3 devices [15], re-
searchers have investigated the susceptibility of DRAM to Rowhammer. A sub-
stantial body of research has demonstrated that Rowhammer can be practically
exploited in real-world scenarios and has detrimental implications on system se-
curity [4, 6–9, 22, 23, 25, 16]. In response, DRAM manufacturers have introduced
in-DRAM mitigations with DDR4 devices. However, these measures were proven
to be ineffective in protecting against Rowhammer [9, 8].

In 2024, the first DDR5 Rowhammer bit flips were reported [10] on a DDR5
DRAM device. In addition to enhanced Rowhammer mitigations, DDR5 incor-
porates on-die error-correcting codes (ECC) and a two-fold increase of the refresh
rate (32ms) compared to DDR4, both of which have implications for Rowham-
mer. Furthermore, advancements in the manufacturing process may also influ-
ence the inherent Rowhammer susceptibility. Consequently, it is yet to be shown
how susceptible DDR5 devices are compared to their predecessors.

2 S. Gloor, P. Jattke, K. Razavi

A common method to quantify the susceptibility of a DRAM device to
Rowhammer is to measure the minimum number of activations required to induce
the first bit flip, which is referred to as minimum hammer count (HCmin) [14].
As in-DRAM Rowhammer mitigations are typically assisted by refresh com-
mands [6, 8], it is required to disable them while determining HCmin. However,
we do not have the capability to disable automatic refreshes in the memory
controller of off-the-shelf desktop CPUs. To make this possible, one approach
that has been proven viable on DDR4 involves injecting faults into the DRAM
command bus using an interposer such that the parity mismatch invalidates the
targeted refresh commands [3]. As this approach requires manipulating high-
speed signals, it is only further complicated by the increased clock frequency
present on DDR5. Furthermore, two-cycle commands in DDR5 and the lack of
the command parity signal that DDR4 fault injection [3] relied on, make design-
ing a fault injection system for DDR5 substantially more challenging.

In this work, we introduce REFault, a low-cost fault injection system that
enables altering bits of the DDR5 command bus. REFault consists of a con-
figurable DDR5 interposer with both general-purpose and high-frequency solid-
state switches with a careful design to minimize parasitic effects and to ensure
reliable operation. Further, our REFault platform comprises a microcontroller
mounted on a custom-designed fault injection controller and a software stack to
automate long-running experiment campaigns. To identify a suitable bit line for
fault injection, we conducted a thorough analysis of constraints and side effects
when injecting faults in all possible DRAM commands that can result in sup-
pression of refreshes. We demonstrate REFault’s potential for studying DDR5
by suppressing refresh commands for multiple milliseconds to characterize the
Rowhammer susceptibility (HCmin) of two DDR5 devices over 128 tested rows.
We determined that the HCmin of both devices is as low as 16 k activations.
We conclude that the increased resistance to Rowhammer in DDR5 devices as
measured by recent work [10] comes from improved mitigations rather than the
DRAM substrate itself.

Contributions. In summary, we make the following contributions:

– We design and build REFault, a low-cost fault injection system that allows
to alter command bits of the high-speed DDR5 bus at the hardware level.

– We analyze the DDR5 command bus encoding as provided by JEDEC [12] to
determine which bit manipulations are usable to disable refresh commands,
and therefore, Rowhammer mitigations.

– We build an automated system that orchestrates the fault injection, monitors
the progress to recover the system in case of crashing faults, and gathers
experiment results.

– We demonstrate REFault’s usability by, for the first time, determining the
minimum hammer count (HCmin) of two DDR5 devices.

Open Sourcing. We publish1 our hardware design files, software, and docu-
mentation to enable reproducibility of our results.
1 https://github.com/comsec-group/refault

REFault: DDR5 Fault Injection Platform 3

2 A Primer on DRAM

DRAM (dynamic random access memory) has evolved to become the de facto
standard for today’s computing devices, for example, in the form of dual in-
line memory modules (DIMMs) for desktops and servers. In its core, DRAM is
composed of a set of two-dimensional arrays of memory cells, where each cell
stores a single bit of information in a capacitor.

Architecture. Like in previous generations, the architecture of DDR5 memory
is structured hierarchically: individual memory arrays are called banks, which are
grouped together to form bank groups. DRAM address bits encode bank (BA),
bank group (BG), row, and column addresses. A single bank spans several phys-
ical chips, because the data bus width of the DIMM bus is wider (32 bits) than
the one of individual DRAM chips (8 or 16 bits). Multiple chips can be grouped
together to form a rank, where all chips share the same Chip-Select (CS) signal.
This allows for increased memory capacity by having multiple ranks that are op-
erated independently of each other. A channel is the set of all command, data,
and control lines of a memory controller required to interface DRAM. Modern
CPUs commonly offer multiple independent channels. DDR5 introduces the new
concept of subchannels. Two entirely independent channels are now present on
one DIMM, which has the benefit of increased concurrency and support for better
scheduling by the memory controller, but also implies that the available 288 bus
pins must now be shared between the two subchannels. As a consequence of this,
there are fewer command/address (CA), data, and control lines available to a
DDR5 subchannel than on regular channels in previous generations. Because
of this reduced pin count, DDR5 introduced two-cycle commands, utilizing two
subsequent clock cycles to encode a single command [11, 12, 21].

Command Set. DDR5 DRAM operates with a given set of commands (see
Table 1), encoded by dedicated CA bits. These commands are used for calibration
and initialization, as well as normal operation.

Refresh. To prevent data loss due to charge leakage, DRAM cells need to be
refreshed periodically. Typically, the recommended refresh window to ensure
proper operation of a DRAM cell is in the order of milliseconds (e.g., 32ms
for DDR5). However, past experiments [19] have shown that in practice, mem-
ory cells can hold their charge over the span of multiple seconds without being
refreshed at room temperature [2]. DDR5 supports two modes of refresh op-
erations: Normal Refresh mode and Fine Granularity Refresh (FGR) mode. In
normal refresh mode, all bank refreshes (REFab) are issued to refresh all banks
in each bank group. In FGR mode, additionally same-bank refreshes (REFsb)
can be issued to only refresh a specific bank in each bank group.

Rowhammer Mitigations. DRAM manufacturers have incorporated a variety
of on-die mitigations, commonly known as Target Row Refresh (TRR). In gen-
eral, these mitigations attempt to identify potential victim rows and refresh them
prematurely (i.e., before the next periodic refresh) to avoid that any disturbance
errors can be induced. In DDR4, such mitigations have not prevented Rowham-

4 S. Gloor, P. Jattke, K. Razavi

Table 1: Simplified DDR5 command set as defined by JEDEC [12]. V=valid
(defined logic level, either high or low), CID=chip id (for die stacking), X=don’t
care (can be floating), AP=auto precharge, CW=control word, BL=burst length,
WRP=write partial, ODT=on-die termination, RFU=reserved for future use,
meaning that it may be assigned a new command in the future. The behavior of
unassigned command encodings is undefined.

Command/address bitsCommand Abbr. CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13
L L L Row R0–3 Bank Bank group Chip CID0–2Activate

(Open a row) ACT H Row R4–16 R17/
CID3

L H L L L VRFU H V
L H L L H L H Bank Bank group Chip CID0–2Write pattern WRP H V Column C3–10 V AP H V CID3
L H L L H H VRFU H V
L H L H L L Address MRA0–7 VMode register write MRW H Opcode OP0-7 V CW V
L H L H L H Address MRA0–7 VMode register read MRR H V CW V
L H L H H L BL Bank Bank group Chip CID0–2Write WR H V Column C3–10 V AP WRP V CID3
L H L H H H BL Bank Bank group Chip CID0–2Read RD H V Column C3–10 V AP V CID3

Vref CA L H H L L L Opcode OP0-6 L V
Vref CS L H H L L L Opcode OP0-6 H V
Refresh all REFab L H H L L H CID3 V H L Chip CID0–2
Ref. mgmt. all b. RFMab L H H L L H CID3 V L Chip CID0–2
Ref. same bank REFsb L H H L L H CID3 Bank V H Chip CID0–2
Ref. mgmt. s. b. RFMsb L H H L L H CID3 Bank V L H Chip CID0–2
Precharge all PREab L H H L H L CID3 V L Chip CID0–2
Precharge same b. PREsb L H H L H L CID3 Bank V H Chip CID0–2
Precharge PREpb L H H L H H CID3 Bank Bank group Chip CID0–2
RFU L H H H L L V
Self-refresh entry SREF L H H H L H V L V
Power-down entry PDE L H H H L H V H ODT V
Multi-purpose MPC L H H H H L Opcode OP0–7 V
Power-down exit,
No operation L H H H H H V

Deselect NOP H X

REFault: DDR5 Fault Injection Platform 5

mer attacks in the past [6, 8–10]. DDR5 introduced Refresh Management (RFM)
commands to provide extra time for DRAM to manage TRR internally.

Previous work [3] demonstrated a cost-effective, hardware fault injection system
for DDR4 memory that disconnects bus signals to manipulate DRAM com-
mands. It consists of an interposer that sits between the motherboard’s DIMM
slot and a standard DDR4 DIMM. While more flexible FPGA-based tools exist
(e.g., [1]), live fault injection has several advantages: (i) it does not rely on the
implementation of a custom memory controller; (ii) it can be used in conjunction
with any standard CPU, allowing the investigation of memory controller-depen-
dent aspects; and finally, (iii) it is very inexpensive and easy to manufacture.
With the advent of DDR5 memory, the question arises: can a similar fault in-
jection platform be designed for DDR5? Since DDR5 introduces some novelties
that complicate this simple fault injection approach, this is a non-trivial problem
that requires solving three major challenges we explain next.

3 Challenges

DDR5 commands are encoded differently than DDR4 commands. Due to the
introduction of subchannels, there are less CA pins available, which is likely why
DDR5 lacks a parity signal for the CA bus. This means that all commands, even
the ones corrupted by fault injection, will be interpreted by DRAM instead of
being safely discarded. Also, this reduction in pin count per channel led to the
introduction of two-cycle commands, which use two clock cycles to convey a sin-
gle memory access or control instruction. With these types of commands, forcing
a single CA line to a fixed level will inevitably affect two bits in the command
encoding. This limits the number of possible CA candidates to fault and po-
tentially increases the negative side effects of fault injection, as some corrupted
commands may lead to protocol violations that induce undefined behavior.

Challenge 1. Determining usable faults that transform a targeted DRAM
command into another valid one while minimizing negative side effects.

By comprehensively analyzing the command set and the fault injection impli-
cations as shown in Section 4, we minimize the negative side effects. In Section 7,
we show that in practice, any remaining effects such as potential timing viola-
tions, do not inhibit the ability to perform Rowhammer.

Commands on the DDR5 bus are issued at a high rate with nanosecond
precision. Electrically, this requires that DDR5 hardware must be carefully de-
signed with regard to trace impedance, propagation delay, reflections, cross talk
and other parasitic effects. In our application, we must not only passively carry
the high speed signals, but actively switch them and change their logic level.
Specifically, we need to first disconnect the appropriate CA line and then force
the respective DIMM input to the desired logic level. This requires a solid state
switch suitable for high speed signals which we can integrate in our design.

6 S. Gloor, P. Jattke, K. Razavi

Challenge 2. Designing a PCB and electronic circuit capable of switching
DDR5 signals while maintaining an acceptable level of signal integrity.

We tackled this challenge by paying close attention to high-speed electronics
design principles and by improving the design iteratively over multiple versions.
We describe the applied PCB design techniques as well as the chosen semicon-
ductor switches in Section 5.

Unlike traditional Rowhammer experiments which operate the DRAM de-
vice within the specifications, hardware fault injection, by definition, stresses
the hardware beyond its limits. It is unclear how DRAM and the experiment
machine will behave to a condition violating the DDR5 specification. As result-
ing crashes might render the experiment machine unusable, the fault injection
system should still be able to autonomously perform data recovery and rebooting
of the machine, regardless of its condition and without manual intervention. This
is especially important for long-term experiments, such as determining hammer
counts of many rows.

Challenge 3. Automatically collecting experiment data and recovering
the system to continue the experiment if fault injection renders the ex-
periment machine unresponsive.

We solved this challenge by having a separate control server that orches-
trates the experiment autonomously, as shown in Section 6. If the experiment
machine becomes unresponsive, the control server has the ability to power cycle
the machine remotely.

4 Interposer Design

The fault injection interposer is the system’s main component. The interposer
actively forces signals on the DDR5 bus to a high or low logic level in order
to manipulate memory commands. It consists of a custom PCB that slots in
between a standard UDIMM slot (mainboard) and a DDR5 UDIMM. We focus
on UDIMMs (unbuffered DIMMs) in this project, but the design should be easily
transferable to RDIMMs (registered DIMMs).

Command Manipulation. As DRAM commands can be issued with only a
few nanoseconds in between them, it is not feasible to suppress a single com-
mand in time without a sophisticated and costly high-speed electronics design.
Therefore, we focus on modifying entire types of commands (e.g., REFs) for a
(comparatively) long time period.

In contrast to DDR4, DDR5 does not offer a parity signal for the CA bus
anymore. This implies that all commands issued by the memory controller will
be interpreted by the DIMM, even if they were malformed by fault injection.
Consequently, direct command suppression, as in mFIT [3], is not possible with
DDR5 anymore. Instead, we transform one command into another one by alter-

REFault: DDR5 Fault Injection Platform 7

ing its CA bit encoding (see Table 1). This new command must be “safe”, in the
sense that it must not interfere with the continuation of normal operation.

Suppressing REF Commands. To select CA lines of interest, we focused on
the suppression of REFab and REFsb commands, as we identified them to be
the most useful for Rowhammer research [6, 8]. There are several possibilities to
transform REFs, according to the command encoding (Table 1). Table 2 shows
the implications for the most important commands when faulting individual CA
lines. As it can be seen in Table 2, there are always some restrictions when
performing fault injection on a single CA bit (indicated by “X”). Ideally, we
would only want a single implication (i.e., “X”) for a single fault. We considered
the three most promising possibilities:

– Forcing CA3 High: This would transform all REFs to PREpb commands,
but it would also set column bit 5 during RD/WR and row bits 1 and 7
during ACT. With the newly created PREpb command, a particular bank
would be precharged. The specification, however, permits precharging a bank
which has an empty row buffer (i.e., has not been activated before).

– Forcing CA10 High or Low: This would remap REFsb to REFab and vice
versa. According to the specification, REFsb is only allowed in FGR mode.
As we cannot check (or manipulate) the current refresh mode, it is unclear
at which point of the experiment the specification would be violated and
how DRAM will react to such a condition. Additionally, timing violations
may occur as the minimum time between two consecutive REFab commands
(tRFC) in normal refresh mode is larger than the minimum interval between
REFab and REFsb or two consecutive REFsb commands in FGR mode.
CA10 also controls auto-precharge for read/write and sets bank group bit 2.

– Forcing CA4 Low: This would remap all REFs to “Vref CA/CS” com-
mands, which are used for calibration and may be illegal during normal
operation. We do not know how the DRAM would react to this. Addition-
ally, it would fix row bits 2 and 8 during ACT, column bit 6 during write,
and not allow reading from memory while the fault injection is active. This
fault would also map PREpb to either PREab or PREsb, depending on the
bank group.

For our final Rowhammer evaluation, we forced CA3 high (Section 7.2 and Sec-
tion 7.3), as we believe this to be the fault that causes the least disturbance on
DRAM operation while still effectively disabling all refresh commands.

5 Interposer Implementation

The design of the fault injection interposer presents two major challenges. First,
it must be able to dynamically force the desired CA lines to either a high or low
voltage level without further disturbing the DIMM operation beyond the desired
fault. Namely, it must maintain a tolerable level of signal integrity and therefore
some high-speed electronics design practices apply. It must also be physically
compatible with both the DIMM slot and the memory module itself.

8 S. Gloor, P. Jattke, K. Razavi

Table 2: Overview of CA candidates for fault injection and their implications. A
plain “X” in the table indicates that the respective command will be transformed
into another one, while “Xx” represents implications to command bits which do
not change the type of command. We highlighted the faults (gray rows) we
considered to be potentially usable.

Command
Fault ACT WR RD REFab REFsb RFMab RFMsb PREab PREsb PREpb

H X
CA0

L Xa X X X X X X X X X
H X X X

CA1
L Xa Xb Xb X X X X X X X
H Xa Xb Xb X X X X X X X

CA2
L Xa X X
H Xa Xb Xb X X X X

CA3
L Xa X X X X X
H Xa X Xb X X

CA4
L Xa Xb X X X X X X
H Xac Xc Xc X X Xc

CA9
L Xac Xc Xc X X Xc

H Xac Xcd Xcd X X X Xc

CA10
L Xac Xcd Xcd X X X Xc

a Opcode encoding intact, row bits are affected.
b Opcode encoding intact, column bits are affected.
c Opcode encoding intact, bank group bits are affected.
d Opcode encoding intact, auto-precharge bit is affected.

Switching Devices. To achieve the desired goal of injecting faults to transform
DRAM commands (see Section 4), our switching circuit depicted in Figure 1 is
comprised of two integrated semiconductor switches:

– a high-frequency switch (A , TMUX136 [24]) to disconnect the CA line tar-
geted from the DIMM bus, and

– a general-purpose analog switch (B , PI5A3157 [5]) to pull the CA line to
either a high or low voltage level.

This configuration was chosen mainly for availability reasons, as a solid state,
3-way (SP3T) switch suitable for high frequencies and DC is challenging to find.
We chose different switching devices than previous work [3], as those would not
allow for pulling a CA line high, which is an important requirement for us.

The high-frequency switch introduces a propagation delay (approx. 100 ps [24])
to the signal. This delay is an inherent property of the switched channel and is, to
our knowledge, independent of the switch’s current position. If we incorporated
switching stages on only a few selected lines, we would expect the interposer to

REFault: DDR5 Fault Injection Platform 9

not work properly because of the introduced propagation delays. For example,
an (unimpeded) clock edge would reach the DIMM earlier than a CA signal that
is routed through a switch, potentially leading to a corrupted command. Addi-
tionally, different impedance or capacitive load properties among switched and
unswitched CA lines may reduce signal integrity. Therefore, we added switching
cascades to all CA lines of subchannel A, including chip select (CS) and clock
signals, to affect the bus uniformly.

PCB Design. We managed to fit everything on a 6-layer PCB without the need
for buried/blind vias, which keeps the manufacturing costs relatively low. The
control signals of the switches are routed to an onboard flat-flex cable connector,
to which the injection controller can be connected. Due to size constraints of the
connector, we decided to only connect the control signals of CA{0-8, 10} and
CS to the injection controller. The remaining control signals are exposed via test
pads that can be statically wired to achieve a constant pass-through behavior.
Figure 2 shows our interposer PCB.

DIMM

CPU GND

VDDA

B

Fig. 1: Diagram of cascaded switches to pull a
single CA line either high or low. This circuit
is replicated for every relevant control/address
signal of subchannel A to ensure equal propa-
gation delays. For the clock signals, we omitted
switch B , as there is no point in disconnecting
and faulting this signal.

1

2

(a) 3D rendering.

B
A

(b) Close-up photo of the
switching devices.

Fig. 2: Our fault injection interposer.

The PCB stackup, i.e., the specification of the used materials and their thick-
nesses for the individual conducting and dielectric layers of a PCB, affects critical
electrical properties, such as impedance. For a high-speed application like this,
using an impedance-controlled stackup, i.e., a PCB design with well-defined and
known impedances, is crucial. Although JEDEC does provide a recommended

10 S. Gloor, P. Jattke, K. Razavi

stackup [13], it is not manufacturable by our supplier. Instead, we use an available
stackup and adjust the trace widths accordingly to match the impedance require-
ments. It is noteworthy that the specification defines multiple target impedances
for differential signal pairs. Also, we carefully length-matched all relevant PCB
traces to ensure an equal propagation delay.

Unlike DIMM slots on off-the-shelf mainboards, in which the DIMM sits
perpendicular to the mainboard, we require a “straddle” mount connector (Fig-
ure 2a- 1) for our interposer. This connector allows the UDIMM to sit in the
same plane as the interposer PCB (Figure 2a- 2), requiring less space and easier
signal routing on the PCB. Sourcing DDR5 UDIMM straddle mount connectors
in small quantities turned out to be a difficult endeavor at our usual distributors.
We reached out to a manufacturer of DDR5 pass-through interposers that was
willing to sell the connectors in small quantities.

We soldered the fault injection interposers in-house by using a custom stencil
and a hot air gun. The straddle mount connector was soldered by hand. With
the fault injection disabled (i.e., interposer is transparent), our systems equipped
with this interposer successfully passed power-on self-test (POST) and runs of
Memtest86+.

Costs. In Table 3, we provide an overview of the total hardware costs for the
interposer and the injection controller. These costs are based on the discounted
price for acquiring components for ten fault injections systems. We note that
these costs do not include the different design revisions we built before arriving
at the final design, the manual labor of assembling the PCBs, and the costs of
other hardware used in our setup (e.g., networking gear, compute nodes).

Table 3: Overview of the total costs for building our fault injection interposer
and injection controller.

Item Supplier Price [$]
Interposer PCB with stencil JLCPCB 20

Parts, e.g., switches Mouser/Digikey 30
Misc., cables, consumables 5

Injection Controller PCB JLCPCB 4
Parts, e.g., connectors Mouser/Digikey 40
Teensy 4.1 µ-controller PJRC 40
Misc., cables, consumables 5

6 System Architecture

In this section, we explain our system architecture and the components sur-
rounding the fault injection interposer. Figure 3 gives an overview of our fault
injection system. At the heart of the system is our fault injection interposer 1

REFault: DDR5 Fault Injection Platform 11

which manipulates the bus signals. The interposer’s switches are controlled by
the injection controller 2 , which in turn is triggered by the host software 3
running on the experiment machine. A control server 4 orchestrates the whole
experiment by providing the host software and retrieving the experiment data.

We focus on the design of the injection controller in Section 6.1, the host
software in Section 6.2, and the control server in Section 6.3.

Control server
(Section 6.3)4

Boot image
generator

Control
software

Experiment machine (x86)

PXE Modified
Memtest86+

(Section 6.2)
3

Interposer device
(Sections 4 and 5)1

DDR5

DDR5

DDR5 UDIMM
DUT

Injection controller
(Section 6.1) 2

Teensy µC

Firmware

USB

TCP/IP

Control
signals

Existing component

Newly designed
or modified
component

Fig. 3: Overview of our fault injection system, also indicating which components
were designed and implemented during this work.

6.1 Injection Controller

As the fault injection interposer is restricted in size, we decided to place its
driver logic on a separate PCB, the injection controller. To synchronize the fault
injection with the workload, the experiment machine running the Rowhammer
code must be able to communicate with this injection controller. For this, we
decided to use USB, as it is universally supported and is comparably easy to
implement. Although there might be other interface types that are easier to
implement, the fact that modern platforms do not offer native serial (RS-232)
or parallel ports anymore, renders this possibility infeasible2.

The injection controller, depicted in Figure 4a, consists of a custom baseboard
and a Teensy 4.1 microcontroller board [20]. This microcontroller board is a com-
mercially available, low-cost prototyping module with a powerful 600MHz, 32-bit
2 Using an adapter, which uses USB in many cases, would not be useful as it still

requires suitable USB drivers.

12 S. Gloor, P. Jattke, K. Razavi

ARM Cortex M7 CPU. Our custom baseboard provides the necessary connector
for it to attach to the fault injection interposer using a flat-flex cable (FFC)
which carries the control signals for the individual switches. The switches are
directly driven by the 3.3V GPIO pins of the Teensy microcontroller. Addi-
tionally, it incorporates an Ethernet port to connect to a network, as well as
some status LEDs. As an afterthought, we added a switching relay to the in-
jection controller board to trigger the physical power switch of the experiment
machine (Figure 4b). This allows for remote power cycling even if the system
is completely unresponsive. This mechanical relay is driven by a transistor that
directly connects to a GPIO pin of the Teensy microcontroller board.

(a) 3D rendering.

Transistor

Relay

(b) Manually added transistor and relay
(flyback diode highlighted in gray).

Fig. 4: Injection controller.

Firmware. The firmware of our injection controller is kept simple and has the
following three main tasks:

– Listen for USB packets from the experiment machine and either store the
received data in a general-purpose data buffer or initiate the fault injection.

– When a fault injection trigger packet is received over USB, activate the
corresponding GPIO pins to drive the switches on the interposer.

– Provide a HTTP server as a mean to communicate with the control server
and to retrieve the experiment data.

We implemented the firmware in C, using existing TCP/IP, USB, and multi-
threading libraries from both the Arduino and Teensy framework.

6.2 Host Software

Software running on the experiment machine should ideally only perform mem-
ory accesses when allowed by the experiment code, to not interfere with the fault
injection and to keep noise to a minimum. This categorically excludes standard
operating systems like Linux or Windows. One possibility is to develop a spe-
cialized, native UEFI application from scratch, which requires additional work

REFault: DDR5 Fault Injection Platform 13

to implement the necessary startup and initialization code, USB host controller
driver, and display drivers before the actual fault injection can be implemented.

Instead, we decided to adapt Memtest86+3[26] for this purpose, as done by
previous work [15]. Memtest86+ is an open-source DRAM testing utility running
directly on top of UEFI, without any operating system in between. More impor-
tantly, we decided to use Memtest86+ as a base system because we can reuse its
framework to build our system, as it already implements the display, USB, and
SMBus/SPD bus drivers, as well as memory management.

Our host software must be able to send commands to the injection con-
troller, access (or hammer) memory, check the memory for bit flips, and report
the results back to the injection controller. For this, it needs to be able to allo-
cate a sufficiently large contiguous piece of physical memory and communicate
with the injection controller via USB. We patched Memtest86+ to include our
Rowhammer experiment code as well as support for sending data (e.g., bitflip
data) and commands (e.g., fault trigger) to the injection controller via USB. For
this, we leveraged the existing USB keyboard driver framework in Memtest86+.
We noticed that the unmodified USB stack of Memtest86+ has issues detecting
keyboards on some USB ports of some systems, which also translates to our
fault injection system. This issue seems to be unrelated to the presence of inter-
nal USB hubs, as external USB hubs do not pose a problem (on QEMU and on
physical machines). We also leveraged the existing SPD driver of Memtest86+

to read out metadata of the DIMM under test. This data is sent to the injection
controller such that it can be retrieved by the control server via its HTTP server.
By using the existing display driver, status information can be displayed on an
attached monitor.

6.3 Control Server

As fault injection might render the experiment machine unresponsive because of
corrupted memory accesses due to the fault injection side effects (see Table 2),
Rowhammer bit flips, or any other undefined behavior caused by violating the
specification, a control server is needed to supervise and control the experiment.
Figure 5 shows the control server components and their interactions.

The control server compiles 1 a bootable image for the experiment machine,
containing the necessary framework and experiment code. It also hosts a PXE
server to send 2 that image to the experiment machine. While the experiment
is running, the control server periodically polls 3 the injection controller for
collecting data, or in case of a crash, rebooting the machine. Both connections
to the injection controller and experiment machine are running over TCP/IP on
a dedicated, isolated network. With this setup, a researcher performing experi-
ments with our system only needs (remote) access to the control server.

The control server consists of a standard GNU/Linux distribution, a DHCP
server with PXE capabilities and a built-in TFTP server, as well as shell scripts
for the automation logic. Depending on the experiment, customized Memtest86+

3 Not to be confused with the proprietary Memtest86.

14 S. Gloor, P. Jattke, K. Razavi

Experiment
code

1
PXE Experiment

machine
Memtest86+

2

Control
Logic

Injection
controllerHTTP API

3

Experiment
networkControl server

Fig. 5: Components of the control server.

images (e.g., with different hammering patterns) are compiled and autonomously
booted on the experiment machine via PXE. Once the experiment finishes, the
control server fetches the data from the injection controller. If the experiment
fails or times out, the control server will automatically power-cycle the experi-
ment machine and try again, or continue with the next experiment. We designed
the system in such a way that the experiment can be run fully remotely and
autonomously, with minimum user interaction: a researcher only needs remote
access to the control server to start the procedure and collect the log files at the
end. The control server can also oversee multiple injection controllers at once.

7 Evaluation

We first focus on basic functional validation (Section 7.1), followed by demon-
strating a simple Rowhammer experiment (Section 7.2). We then provide a more
elaborate hammer count estimation (Section 7.3), and finally, explain the issue
of occasional data corruption that we encountered (Section 7.4).

7.1 Functional Validation

To test whether all switches are working, we ran a script on the control server
that consecutively generates Memtest86+ images that inject a fault on each CA
line with each fault level. Without proper control and synchronization of the
workload, a crash of the system upon fault injection is very likely. In case the
machine does not crash immediately, the fault injection is repeated in a loop.
A crash usually manifests itself as a corrupted screen image, an exception (e.g.,
illegal instruction, page fault), or unresponsiveness. We use these crashes as a
proxy to verify that all switches are properly working. In addition to this, we
manually verified proper voltage levels and timings of single switches using a
high-speed oscilloscope.

REFault: DDR5 Fault Injection Platform 15

︸ ︷︷ ︸
Fault ︸

︷︷
︸

C
A

bu
s

CA3

Control
signal

Hammering (40 kACTs)︷ ︸︸ ︷

Fig. 6: Mixed-signal oscilloscope measurement of the DDR5 bus during a basic
Rowhammer experiment. Due to the high data rate, the transitions of the digital
DDR5 signals blend together at the depicted zoom level, such that they are
displayed as solid bars.

7.2 Basic Rowhammer Experiment

To validate the system’s basic functionality, we set up a simple Rowhammer
experiment with disabled refreshes where we hammer a double-sided aggressor
pair for 20 k activations (i.e., 40 k activations in total). For disabling refreshes,
we force CA3 to be high during hammering, which we identified before as candi-
date for suppressing REFs in Section 4. This transforms all REF commands into
PREpb. We monitored the DDR5 bus using a high-speed, mixed signal oscillo-
scope, as depicted in Figure 6. Using this experiment, we successfully triggered
Rowhammer bit flips on DDR5. Bit errors happened only next to the aggressor
rows and did not occur without hammering, which confirms that they are not a
side effect of the fault or the absence of refreshes (i.e., retention failures).

Row Remapping. When forcing CA3 to a high level, this also forces row bit 1
to be set during activation. In general, this makes double-sided hammering im-
possible. However, we can circumvent this limitation by exploiting internal row
remapping, which is employed by two out of three major DRAM manufactur-
ers [17, 18]. By hammering rows 7 and 15 (as seen by the memory controller), a
double-sided hammering of row 8 is achieved as row 15 is remapped to row 9 in
these devices, as shown in Figure 7. As expected, we start observing bit flips at
relatively low hammer counts when hammering rows 7 and 15, confirming that
our devices actually employ this row remapping scheme.

16 S. Gloor, P. Jattke, K. Razavi

016n+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
row index addressed
by memory controller

fault remapping

internal remapping

physical row index016n+ 1 2 43 5 6 7 8 109 11 12 1413 15

Fig. 7: In general, the row remapping caused by the fault makes double-sided
hammering impossible. However, on devices with internal row remapping, this
limitation can be circumvented.

7.3 Hammer Count Estimation

To demonstrate the usability of our platform, we estimated the minimal ham-
mer count (HCmin) of devices from the two major DRAM vendors that employ
internal row remapping. The details of the DIMMs we used are shown in Table 4.

Table 4: Details of DIMMs used for the hammer count estimation. We report
the frequency (Freq.) in MHz, the data bus width (I/O) in bits, and further the
number of ranks (R), bank groups (BG), and banks per bank group (B).

DRAM Vendor DIMM Model Mfg.Date Size Freq. I/O R BG B
Micron CT16G48C40U5.M8A1 W02/22 16 G 4800 x8 1 8 4
Samsung CMK32GX5M2B5200Z40 W38/22 16 G 4800 x8 1 8 4

Experiment. For this, we repeated the previous Rowhammer experiment (Sec-
tion 7.2) using the CA3 fault with a sweeping number of activations over a span
of 128 rows. We count activation of both aggressors as a single hammer. As we
noticed during the previous experiment that the initial hammer count was not
always sufficient to trigger bit flips, we start the experiment with a hammer count
of 40 k (i.e., 80 k activations in total) and decrease it if a row yields bit flips. If
a row does not yield bit flips three consecutive times, we continue with the next
victim row, 16 rows further due to the row remapping (Figure 7). We decrease
the hammer count by 1 k, 2 k, 3 k, or 5 k, depending on the previous hammer
count and the number of bit flips we encountered in the previous round. Our
final hammer count update, however, is always ± 1 k from the previously tested
hammer count, which guarantees consistent accuracy of our reported HCmin.
We found this optimization technique empirically, and we use it to speed up the

REFault: DDR5 Fault Injection Platform 17

experiment run time. We did not employ a standard binary search, as a negative
outcome (i.e., no bit flips) is more expensive (3 retries) than a successful one.
Hence, we opted for a search technique that does not overshoot the true value.

Setup. The experiment was performed on a AMD Zen 4 machine (Ryzen 7
7700X) using a fault duration of 10ms. Collecting data for 128 rows of a single
DIMM required approximately 54 hours of runtime.

Results. The results are given in Figure 8 and its associated table. Our results
show a minimum hammer count of 16 k activations, for both devices, with DRAM
chips from Samsung and Micron. Single-sided bit flips on devices without internal
row remapping (i.e., from the third major DRAM vendor) could not be obtained.
It is unclear whether this is due to an error in our setup, or just simply because
the real single-sided hammer count is higher than the maximal value we tested
for (90 k), due to on-die ECC, which is available on DDR5 [12].

DRAM HCmin HCavg

Samsung 16 k 22 k
Micron 16 k 21 k

Micron Samsung

DRAM vendor

0

4 k

8 k

12 k

16 k

20 k

24 k

28 k

32 k

H
C

m
in

Fig. 8: Minimal hammer counts for tested DIMMs. We report for both DIMMs
the minimum (HCmin) and the average hammer count (HCavg) over all 128 tested
rows. The plot depicts the hammer count distribution across rows.

7.4 Reliability and Data Corruption

We observed a pronounced difference in reliability of the fault injection depend-
ing on the machine type (Intel Alder/Raptor Lake, AMD Zen 4), fault duration,
and hardware configuration. We achieved the most reliable results on AMD Zen 4
using an external GPU and a fault duration of 10ms. In this configuration, we
observed a success rate (i.e., a successful hammering without the machine crash-
ing) during the experiment in Section 7.3 of 33–41%.

Faults active for a prolonged duration (in the range of tens of milliseconds),
drastically increase the probability of the machine crashing during the exper-
iment, especially on Intel machines. In some of these cases, all data returned

18 S. Gloor, P. Jattke, K. Razavi

by the DIMM appeared to be random. As it appears to occur suddenly (with
respect to increasing the fault duration) and uniformly over time, we can rule
out retention errors. Interestingly, the corruption of a 64 bit double-word seems
to occur byte-wise, i.e., bytes are either corrupted or intact, which suggests that
this might be an effect on a chip level. However, x16 chips still show a byte-
grouped corruption, which may be either a consequence of the chip’s internal
architecture, or it may not be related to the chips at all, but rather an effect of
other hard- or software. We leave further investigation of this problem to future
work.

8 Discussion

There are some inherent limitations with the way we interpreted DDR5 fault
injection that could be a promising direction for future work.

Command Transformation. Since single-command, or even single-bit manip-
ulation would require complex high-speed circuitry capable of monitoring the
DDR5 bus for nanosecond-precision fault injection, we must accept that the
fault introduced by our interposer (which does not have any bus monitoring ca-
pabilities) will be present for the duration of multiple commands. This is due
to both the coarse synchronization caused by the lack of bus monitoring and
the fact that the solid-state switches are not fast enough to force only a sin-
gle bit in time. The command encoding (see Table 1), defined by the JEDEC
specification [12], severely limits the possibilities of manipulating a single CA
line for a comparatively long period of time, since a single command bit always
affects a multitude of different commands (see Table 2). The introduction of
two-cycle commands further limits the possibilities of fault injection, as a CA
line represents two bits of information during a single command. Hence, it is not
possible to suppress or transform a single command of choice without affecting
other commands. The challenge is to find a trade-off between suppressing the
command of interest while still allowing basic memory access. We have focused
on faulting CA3 bit high, as we believe this fault inflicts the least disturbance
on DRAM operation while still achieving the goal of disabling REFs.

Data Corruption. As we described in Section 7.4, prolonged fault durations
(larger than approximately 10 ms) drastically increase the probability of a crash
of the experiment machine. This limits the flexibility of our platform, as some
experiments, such as investigating retention failures, can not be performed due
to requiring longer fault durations. As we were unable to locate the root cause
of this problem yet, we can not make any speculation on how to circumvent this
issue. It might be worthwhile to investigate whether the data corruption issue
is related to certain DRAM commands being suppressed (e.g., multi-purpose
commands), or due to some unknown side effect of the fault injection (e.g.,
interference). We think that further investigation is very promising to greatly
increase the applicability of our fault injection platform.

REFault: DDR5 Fault Injection Platform 19

Implications for Double-Sided Hammering. When suppressing REFs by
faulting CA3 high, this also sets row bit 1 and 7. This means that a double-
sided attack is generally not possible in this mode, as this would require access
to two rows which are both next to the victim row and therefore differ in row
address bit 1. However, because some DIMMs use internal remapping schemes,
we can circumvent this limitation on selected DIMMs.

Other Faults. Exploring the usability of other faults, such as forcing CA10
high or low, or forcing CA4 low (Section 4), could be an interesting direction for
future work.

9 Conclusion

We designed and built REFault, a custom fault injection system for flexible
manipulation of the command/address (CA) bus in DDR5 memory systems. By
analyzing the DDR5 command encoding [12], we identified the most suitable CA
lines for fault injection. The REFault interposer, positioned between a standard
computer mainboard and a DDR5 UDIMM, uses high-frequency switches to
precisely impose a high or low level on any CA bit. These switches are controlled
by a custom injection controller, triggered by a modified version of Memtest86+

running on the experiment machine. Our workflow integrates a control server to
automate and monitor experiments, ensuring efficiency and reliability.

We confirmed the functionality of our platform by suppressing refresh com-
mands for several milliseconds and successfully triggered DDR5 Rowhammer bit
flips. For the first time, we determined the minimum hammer count (HCmin) of
DDR5 DRAM devices from two major DRAM manufacturers. With this work,
we have built a novel DDR5 testing platform that lays the foundation for future
DDR5 Rowhammer research.

References

1. Antmicro: Extending the Open Source Rowhammer Testing Framework to DDR5.
https://antmicro.com/blog/2022/08/extending-the-open-source-rowhammer-
testing-framework-to-ddr5/, last accessed 2025/01/09 (2022)

2. Cojocar, L., Kim, J., Patel, M., Tsai, L., Saroiu, S., Wolman, A., Mutlu, O.: Are We
Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers. In:
S&P ’20. pp. 712–728. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00085

3. Cojocar, L., Loughlin, K., Saroiu, S., Kasikci, B., Wolman, A.: mFIT: A
Bump-in-the-Wire Tool for Plug-and-Play Analysis of Rowhammer Susceptibility
Factors. No. MSR-TR-2021-25, Microsoft (2021), https://www.microsoft.com/en-
us/research/publication/mfit-a-bump-in-the-wire-tool-for-plug-and-play-
analysis-of-rowhammer-susceptibility-factors/, last accessed 2025/01/09

4. de Ridder, F., Frigo, P., Vannacci, E., Bos, H., Giuffrida, C., Razavi, K.: SMASH:
Synchronized Many-sided Rowhammer Attacks From JavaScript. In: USENIX Se-
curity ’21. USENIX Association (2021)

5. Diodes Inc.: PI5A3157. https://www.diodes.com/assets/Datasheets/PI5A3157.
pdf, last accessed 2025/01/13 (2023)

20 S. Gloor, P. Jattke, K. Razavi

6. Frigo, P., Vannacci, E., Hassan, H., van der Veen, V., Mutlu, O., Giuffrida, C., Bos,
H., Razavi, K.: TRRespass: Exploiting the Many Sides of Target Row Refresh. In:
S&P ’20. IEEE (2020)

7. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A remote software-induced
fault attack in JavaScript. In: DIMVA ’16. pp. 300–321. Springer (2016).
https://doi.org/10.1007/978-3-319-40667-1_15

8. Hassan, H., Tugrul, Y., Kim, J., van der Veen, V., Razavi, K., Mutlu, O.: Uncov-
ering in-DRAM RowHammer protection mechanisms:a new methodology, custom
RowHammer patterns, and implications. In: MICRO ’21. ACM (2021)

9. Jattke, P., Van Der Veen, V., Frigo, P., Gunter, S., Razavi, K.: BLACKSMITH:
Scalable rowhammering in the frequency domain. In: S&P ’22. pp. 716–734. IEEE,
United States (2022). https://doi.org/10.1109/SP46214.2022.9833772

10. Jattke, P., Wipfli, M., Solt, F., Marazzi, M., Bölcskei, M., Razavi, K.: Zenhammer:
Rowhammer Attacks on AMD Zen-based Platforms. In: USENIX Security ’24.
USENIX Association (2024)

11. JEDEC Solid State Technology Association: JEDEC Standard DDR4 SDRAM.
https://www.jedec.org/standards-documents/docs/jesd79-4a, last accessed 2025/
01/09 (2014)

12. JEDEC Solid State Technology Association: JEDEC Standard DDR5 SDRAM.
https://www.jedec.org/standards-documents/docs/jesd79-5b, last accessed 2025/
01/09 (2020)

13. JEDEC Solid State Technology Association: DDR5 Unbuffered Dual Inline Mem-
ory Module (UDIMM) Common Standard. https://www.jedec.org/standards-
documents/docs/jesd308a, last accessed 2025/01/13 (2024)

14. Kim, J.S., Patel, M., Yaglikci, A.G., Hassan, H., Azizi, R., Orosa, L., Mutlu, O.:
Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices
and Mitigation Techniques. In: ISCA ’20. pp. 638–651. IEEE, Valencia, Spain
(May 2020). https://doi.org/10.1109/ISCA45697.2020.00059, https://ieeexplore.
ieee.org/document/9138944/

15. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA ’14. pp. 361–372. ACM/IEEE (2014).
https://doi.org/10.1109/ISCA.2014.6853210

16. Marazzi, M., Razavi, K.: RISC-H: Rowhammer Attacks on RISC-V. In: DRAM-
Sec ’24 (2024)

17. Nam, H., Baek, S., Wi, M., Kim, M.J., Park, J., Song, C., Kim, N.S., Ahn, J.H.:
DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing
Memory Commands. In: ISCA ’24. ACM/IEEE (2024)

18. Orosa, L., Rührmair, U., Giray Yağlikçi, A., Luo, H., Olgun, A., Jattke, P., Patel,
M., Kim, J.S., Razavi, K., Mutlu, O.: SpyHammer: Understanding and Exploit-
ing RowHammer Under Fine-Grained Temperature Variations. IEEE access 12,
80986–81003 (2024). https://doi.org/10.1109/ACCESS.2024.3409389

19. Patel, M., Kim, J.S., Shahroodi, T., Hassan, H., Mutlu, O.: Bit-Exact ECC Recov-
ery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM
Data Retention Characteristics. In: MICRO ’20. pp. 282–297. IEEE, Athens,
Greece (2020). https://doi.org/10.1109/MICRO50266.2020.00034

20. PJRC, LLC.: Teensy® 4.1 development board. https://www.pjrc.com/store/
teensy41.html, last accessed 2025/01/14 (2021)

21. Schlachter, S., Drake, B.: Introducing micron® DDR5 SDRAM: More
than a generational update. https://www.micron.com/content/dam/micron/

REFault: DDR5 Fault Injection Platform 21

global/public/products/white-paper/ddr5-more-than-a-generational-update-
wp.pdf, last accessed 2025/01/09 (2019)

22. Seaborn, M., Dullien, T.: Exploiting the DRAM Rowhammer Bug to Gain Ker-
nel Privileges. https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html, last accessed 2025/01/09 (2015)

23. Tatar A., Konoth, R., Athanasopoulos, E., Giuffrida, C., Bos, H., Razavi, K.:
Throwhammer: Rowhammer Attacks Over the Network and Defenses. In: USENIX
ATC ’18. pp. 213–226. USENIX Association, Boston, MA (2018)

24. Texas Instruments: TMUX136. https://www.ti.com/lit/ds/symlink/tmux136.
pdf, last accessed 2025/01/13 (2023)

25. Van Der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna,
G., Bos, H., Razavi, K., Giuffrida, C.: Drammer: Deterministic Rowhammer at-
tacks on mobile platforms. In: CCS ’16. vol. 24-28-October-2016, pp. 1675–1689.
ACM (2016). https://doi.org/10.1145/2976749.2978406

26. Whitaker, M.: Memtest86+. https://memtest.org/, last accessed 2025/01/10
(2024)

