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Abstract. In many real-world scenarios, being able to infer specific soft-
ware versions or variations of cryptographic libraries is critical to mount-
ing targeted exploits. For this, traditional version-detection approaches
often rely on direct inspection of programs. However, modern computing
platforms frequently employ protection for code, e.g., using execute-only
memory (XOM) or trusted execution environments (TEE) to safeguard
sensitive code from disclosure and reverse engineering.
This paper demonstrates how side-channel measurements via CPU port
contention reveal distinctive execution signatures, even when code is in-
accessible for inspection. Our proof-of-concept implementation PortPrint
identifies cryptographic functions, reveals library versions, and even un-
covers whether a WolfSSL build is vulnerable to CVE-2024-1544 or if
Spectre mitigations are active in Xen. We verify that PortPrint works
despite state-of-the-art code protection mechanisms, such as memory
protection keys, hypervisor-based XOM, Intel SGX, Intel TDX, and
AMD SEV. We also report a negative result for leaking code protected
with these techniques using Meltdown and Foreshadow, providing valu-
able insights into the limitations of these attacks. Our results show that
hardware-based isolation is insufficient to conceal instruction streams.

1 Introduction

In practical attack scenarios, knowing the exact software version or crypto-
graphic library variant a victim uses is often crucial for mounting successful
attacks. Thus, one strategy for improving system security is to prevent unautho-
rized code inspection. Execute-only memory (XOM) achieves this by allowing
the CPU to fetch and run instructions without making them accessible to load
or store instructions. Early implementations date back to 1965 [12], with several
later works proposing XOM for security hardening, e.g., to protect intellectual
property [31], or impede exploitation [5, 8, 14, 21, 30]. Consequently, CPU ven-
dors also added hardware support for XOM, e.g., with Memory Protection Keys
(MPK), which allow marking pages as execute-only [23,33]. In parallel, Trusted
Execution Environments (TEEs), such as Intel SGX, AMD SEV, or Intel TDX,
rely on transparent memory encryption at the hardware level to prevent code
inspection.
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While XOM and TEEs offer strong security guarantees, previous work has
shown that microarchitectural attacks can undermine these protections [10,40].
Data inside TEEs has been a prime target for microarchitectural attacks, as
TEEs have strong attackers in their threat model and–by definition–contain sen-
sitive data [40]. Moreover, transient-execution attacks such as Meltdown [32],
Foreshadow [46], RIDL [38], and ZombieLoad [41] demonstrate that microar-
chitectural attacks can leak data despite strong hardware protection. However,
these attacks only focus on disclosing data instead of code.

In this paper, we demonstrate that port contention attacks [3] effectively
leak information about the instructions executed in environments where the
code is inaccessible, such as with XOM or TEEs. By exploiting simultaneous
multithreading (SMT), attackers can measure timing delays that occur when
different instruction types contend for specific execution ports. Since this method
monitors the instruction pipeline rather than the data pipeline, it circumvents
mechanisms such as memory encryption or XOM that primarily secure data
paths. As a result, attackers can reveal high-level code characteristics, which
suffices for fingerprinting cryptographic functions, library versions, and other
unique code fragments without needing to read the instructions directly. Our
proof-of-concept implementation PortPrint also works in scenarios where the
code is protected by state-of-the-art XOM techniques [21, 33] or TEEs such as
Intel SGX, Intel TDX, or AMD SEV. Our evaluation of all these techniques
shows that they have no impact on the port-contention leakage.

We systematically evaluate different microarchitectures, including Intel (Kaby
Lake, Golden Cove) and AMD (Zen 3). We evaluate the technique on four
symmetric ciphers–AES, ChaCha20, Camellia, and Aria–as well as the SHA1,
SHA256, SHA3, and MD5 hash algorithms and demonstrate that different im-
plementations can be distinguished. Additionally, even the library (Linux vs.
OpenSSL) can be reliably detected. We demonstrate that the subtle differences in
port usage of instructions are enough to build a classifier with an accuracy above
99% for cryptographic workloads. In a realistic scenario, we detect whether a
version of WolfSSL is vulnerable to CVE-2024-1544 by observing port contention
while it performs ECDSA signing. Furthermore, we show how an attacker can
identify which Spectre mitigations are enabled in Xen by measuring the hypervi-
sor’s port usage on cpuid traps. Our approach informs attackers about possible
exploits by revealing the cryptographic implementation and potential mitiga-
tions. For instance, detecting a vulnerable library version can help an attacker
use a tailored microarchitectural attack.

Interestingly, while transient-execution attacks such as Meltdown [32], Fore-
shadow [46], and ZombieLoad [41] can leak data from microarchitectural buffers,
our experiments confirm that they are ineffective in leaking code. This is a con-
sequence of their reliance on data-path vulnerabilities and the lack of a direct
equivalent in the instruction pipeline. In contrast, port contention exploits fun-
damental design features of SMT and execution ports, showing that hardware-
based isolation through XOM or TEEs alone may be insufficient to conceal
instruction streams.
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Contributions. In summary, we make the following contributions:

– We present PortPrint, a generic port contention–based technique that reveals
fine-grained instruction usage in protected code, including XOM or TEE
settings.

– We demonstrate its effectiveness in three case studies: (1) fingerprinting cryp-
tographic algorithms and their implementations (Linux vs. OpenSSL), (2)
distinguishing between vulnerable and fixed WolfSSL implementations (CVE-
2024-1544), and (3) detecting whether Spectre mitigations are active in Xen.

– We compare our approach with transient-execution vulnerabilities (Melt-
down, Foreshadow, ZombieLoad). We observe that these attacks fail to leak
code, underscoring that port contention is a unique threat vector against
code confidentiality.

Outline. The remainder of the paper is organized as follows. Section 2 in-
troduces the background required for the paper. Section 3 describes the design
and implementation of PortPrint. Section 4 evaluates PortPrint on 3 case stud-
ies, showing that it can distinguish cryptographic implementations and library
versions and detect the presence of Spectre mitigations in the hypervisor. Sec-
tion 5 discusses the security impact, limitations, mitigations, applicability to
other architectures, and related work. Section 6 concludes.

Availability. We publish proof-of-concept code for PortPrint under
https://github.com/cispa/PortPrint.

2 Background

In this section, we provide the background required for the remainder of the
paper. We discuss the state of the art for execute-only memory and introduce
port contention.

2.1 Execute-Only Memory (XOM)

Execute-only memory prevents direct read access while allowing instruction
fetches and execution. With the growing number of code-reuse exploits, re-
searchers have advocated XOM to impede the disclosure of binaries [5, 7, 43].
For exploitation techniques like return-oriented programming to be feasible, an
attacker must have access to the target binary’s code. When denying read access
to code sections, an attacker cannot easily learn gadget addresses, thus com-
plicating return-oriented programming (ROP) or other code-reuse techniques.
Several proposals also combine XOM with code diversification to achieve leak-
age resistance [14,30,42].

2.2 Hardware-enforced XOM

Protection Keys. On x86 CPUs, modern hardware-based XOM can be created
using Memory Protection Keys (MPK) [1, 23], available on multiple Intel and
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AMD CPUs. MPK reserves a 4-bit “protection key” in each page table entry,
mapped to bits in a dedicated pkru register. User-mode software can update
this register without kernel transitions to selectively disable read or write access
to pages tagged with the same key. With both bits set, the code in those pages
is effectively execute-only.

Since MPK aims to prevent accidental memory corruption rather than ma-
licious attacks, some security weaknesses persist [11, 20, 45, 48]. For instance,
file-backed memory remains mutable, and sigreturn-based manipulations can
revert pkru settings. Still, MPK offers a low-overhead XOM mechanism.
XOM in Virtual Machines. The virtualization extensions in recent x86 CPUs
give hypervisors fine-grained control over memory access permissions in virtual
machines. With features such as Intel’s Extended Page Tables (EPT) [23] and
AMD’s Reverse Map Table (RMP) [1], this also includes the capability to create
XOM ranges in the guest’s address space. Hence, these mechanisms can serve as
a more secure alternative to MPK in virtualized environments [8, 14,21].
Trusted Execution Environments and Confidential VMs. Hardware-
backed trusted execution environments (TEEs) also implement memory encryp-
tion and isolation schemes that can effectively result in execute-only properties.
Examples include Intel SGX, AMD SEV, and, more recently, Intel TDX. In par-
ticular, AMD Secure Encrypted Virtualization (SEV) [28] provides transparent
memory encryption for entire virtual machines, ensuring that a malicious hyper-
visor or privileged adversary cannot read the contents of guest memory. Later
iterations, such as SEV-ES and SEV-SNP, tighten the security guarantees by
hiding CPU register states and adding integrity checks on guest memory, re-
spectively. Intel Trust Domain Extensions (TDX) [22] similarly isolate tenants’
confidential virtual machines (Trust Domains) from a potentially untrusted vir-
tual machine manager or hypervisor. By encrypting guest pages and restricting
hypervisor access to them, TDX prevents memory inspection or tampering.

2.3 Port Contention

Modern CPUs rely on simultaneous multithreading (SMT) to improve core uti-
lization by enabling two or more logical threads to operate on shared physical
resources. While these shared structures boost overall throughput, they also ex-
pose potential information leaks if one thread can observe the behavior of another
through resource contention. When the CPU frontend decodes an instruction,
the instruction is decomposed into one or more smaller micro-operations (µops).
These µops are then dispatched to specific execution ports that map to special-
ized functional units. Each port is designed to handle certain classes of operations
(e.g., arithmetic, load/store, and floating point). However, particular µops can
sometimes be routed to multiple ports.

Because SMT allows multiple threads to run in parallel on the same core,
contention arises if both threads compete for identical execution ports, resulting
in timing variations. Attackers can exploit this by crafting contention primitives,
which consist of instructions that only target a specific port. By analyzing their
execution times, an attacker can thus infer how frequently the sibling thread
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Fig. 1: Instruction processing in Intel’s Golden Cove microarchitecture [26]. The
scheduler dispatches µOps through the execution ports p0 - p11.

uses this port. Prior works demonstrate that this can leak sensitive information
in cryptographic implementations [3] or be used for Spectre attacks [6]. Re-
cent research has extended these attacks to the browser setting, revealing that
side-channel adversaries can infer port usage via WebAssembly [37], effectively
enabling cross-thread leakage in sandboxed environments.

For illustration, see Figure 1, which shows the Golden Cove microarchitecture
used in the performance cores of Intel’s Alder Lake CPUs. It has 12 ports (p0-
p11) in total, 7 of which handle memory accesses and 5 of which handle branches
and arithmetic. Due to extensive reverse-engineering efforts [2], port usage of in-
structions in this architecture is well known. To create a contention primitive, an
attacker could e.g., use crc32 instructions, which only target p1. However, ports
like p6 cannot be probed individually, as every instruction executed through p6
also utilizes p0. Following the convention of Abel et al. [2], we denote contention
primitives targeting such combinations with both port numbers, e.g., targeting
p06.

3 Design and Implementation of PortPrint

This section presents the design of PortPrint. We provide an overview in Sec-
tion 3.1, define the attacker model in Section 3.2, and explain our design and
implementation of PortPrint in Section 3.3 and Section 3.4.

3.1 Overview

On a high level, PortPrint’s objective is to differentiate between different con-
figurations of the victim code. For instance, if the victim uses a cryptographic
library, a potential goal is to find out the specific algorithm it uses or to check
whether the implementation is prone to known vulnerabilities. PortPrint achieves
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Fig. 2: PortPrint has four stages: (1) Creating port-contention primitives in the
offline phase either dynamically or based on reverse-engineered information, (2)
tracing the execution ports during victim execution, (3) converting the traces to
a port-contention profile, and (4) classifying the profiles.

this by tracing the execution times for instructions targeting a specific execu-
tion port while the victim executes in the sibling thread, similar to attacks
like PortSmash [4] and SMoTherSpectre [6]. It then combines multiple of these
measurements into a port contention profile, which indicates how contended a
specific port is n cycles after starting the victim code. We show that this port
contention profile is specific to the victim code and can accurately identify a
known program.

3.2 Attacker Model

PortPrint assumes an attacker capable of executing arbitrary code in the vic-
tim’s SMT sibling thread. Furthermore, this attacker possesses a synchronization
primitive in the victim’s code that is accurate within roughly 100 cycles. Hence,
they can temporally align repeated measurements for different ports. We assume
that the execution of the victim code frequently repeats to facilitate this. This
is in line with the threat model of TEEs, where a privileged attacker may use
single-stepping for synchronization [47, 50, 51]. With attacks against the kernel,
hypervisor, or XOM, an attacker can invoke the victim code directly, eliminating
the need for synchronization.

3.3 Design

PortPrint consists of 4 stages as illustrated in Figure 2: (1) finding port con-
tention primitives, (2) tracing the victim port usage, (3) converting measure-
ments to profiles, and (4) classifying the profiles.
Port Contention Primitives. We refer to a block of instructions that, when
executed, exhausts only a single execution port or a specific combination of exe-
cution ports as a port contention primitive. The port usage of instructions is un-
documented and subject to change between microarchitectures, and these port
contention primitives are hence specific to the target microarchitecture. Port-
Print’s contention primitives are based on the port usage information reverse-
engineered by Abel et al. [2]. However, if this information is unavailable, it
can also be obtained with dynamic approaches, as previous work has demon-
strated [15,18,49].
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Algorithm 1: Convert Time Intervals to Contention Profiles
Input : N : Number of desired profile samples.

δ: Number of cycles between profile samples.
T: Array of TSC intervals, covering at least N × δ cycles

Output: P: Contention profile with N samples.

p← 0;
S ← CumulativeSum(T);

for i← 0 to N − 1 do
while S[p] < i× δ do

p← p+ 1;
end
P[i]← T[p];

end
return P;

Tracing the Victim’s Port Usage. The attacker continuously executes a
port contention primitive while the synchronized victim is executing. Once the
primitive’s execution is complete, the attacker records the current time-stamp
counter value (i.e., the value of rdtsc) and repeats this process for a certain
number of iterations. This leaves them with a trace of time stamps, which they
can trivially convert into time intervals, and hence the execution times of the
contention primitives. Larger intervals indicate a higher level of contention for
the target port at the time of recording, meaning that the victim must have
executed port-specific instructions. For better accuracy, PortPrint records mul-
tiple such traces for each execution port and repeats this procedure for multiple
ports. Note that while we can precisely probe ports for arithmetic operations,
this is significantly more challenging for ports that control memory accesses or
branches since timing differences from branch prediction and caching structures
can far outweigh the effects of port contention. Therefore, we only consider ex-
ecution ports we can probe without accessing memory or inducing control-flow
speculation.
Creating Port Contention Profiles. Although the attacker possesses the
information required to differentiate between code configurations, performing
this classification directly on time-stamp traces is difficult. This is primarily
because the effects of port contention may only amount to a few cycles of ad-
ditional latency between measurements, leading to a low signal-to-noise ratio in
the measurements [18]. Furthermore, a single outlier can skew the timing of all
following measurements.

PortPrint solves this problem by first converting the time-stamp traces to
port contention profiles. Instead of latencies between measurements, such pro-
files record the time needed to execute the port contention primitive at a given
time after starting the victim procedure. To perform this conversion, we use Al-
gorithm 1, which takes a profile length N , a profile sample interval δ, and the
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sequence of measured time stamp intervals T . In O(|T | +N) time, it creates a
contention profile P of length N , where P [i] is the interval observed after i× δ
cycles. Such profiles have the advantage of being temporally aligned. This allows
us to combine multiple profiles from the same victim program into one by using
element-wise arithmetic means, thus improving the signal-to-noise ratio.
Profile Classification. Finally, PortPrint uses a classifier model to determine
the victim’s code configuration. While many classification algorithms may work
for this purpose, our PortPrint design uses simple Random Forest Classifiers
with 100 decision trees for binary and multi-class classification. We train this
classifier on profiles of known code configurations, allowing us to automatically
distinguish between them.

3.4 Implementation

Our proof-of-concept implementation for PortPrint consists of two components:
A profiler, which records the time-stamp traces, and a classifier, which con-
verts them to port contention profiles and classifies them with a Random Forest
classifier.
Profiler. Our profiler is implemented in C and small segments of assembly
for the port contention primitives. The proof-of-concept implementation used
in this paper targets the Intel Skylake, Intel Golden Cove, and AMD Zen 3
microarchitectures. We list the instructions used by our port contention profiles
in Appendix B. While these might not be the ideal primitives, they work well
for a wide range of scenarios, as shown in Section 4.
Classifier. The classifier is implemented in Python. It relies on the popular
scikit-learn library [34], which provides a highly optimized Random Forest Clas-
sifier implementation.

4 Evaluation

We evaluate the effectiveness of PortPrint in 3 case studies: Section 4.1 demon-
strates the general feasibility of our approach by distinguishing between different
cryptographic algorithms based on port contention. In Section 4.2, we explore
a more practical scenario by distinguishing between a vulnerable and a non-
vulnerable version of the popular WolfSSL library. Finally, we use PortPrint
to determine which Spectre mitigations are enabled in the Xen hypervisor in
Section 4.3.
Evaluation Setting. We extensively evaluate PortPrint on an Intel Core i3
8130U (Kaby Lake), an Intel Core i5 13600KF (Alder Lake with Golden Cove
P-Cores), and a Ryzen 7 5700G (Zen 3 Cezanne). Additionally, we verify Port-
Print’s applicability with various code protection mechanisms, including AMD’s
SEV on an AMD EPYC 7252, Intel’s TDX on an Intel Xeon Gold 6526Y, and
XOM (both MPK and hypervisor-enforced) on an Intel Core i5 13600KF . The
details about the tested systems are listed in Table 1 in Appendix A. We observe
the same results independent of the protection used, which is expected, as these
protection methods do not interfere with execution units.
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Fig. 3: Average runtime overhead of the port contention primitives when execut-
ing cryptographic algorithms in the sibling thread (average of 215 samples).

4.1 Distinguishing Cryptographic Algorithms

We demonstrate that PortPrint can distinguish between cryptographic algo-
rithms by profiling symmetric ciphers and hash algorithms from Linux and
OpenSSL. Overall, we evaluate 17 implementations, as listed in Appendix C. We
profile each implementation by invoking them with a workload size of 4 kB while
continuously measuring the execution time of our contention primitives. These
raw measurements are then converted into contention profiles with N = 4000
and δ = 20 cycles, thus covering 80 000 cycles overall.
Hash Algorithms. Figure 3 shows excerpts from the contention profiles of
OpenSSL’s SHA1 and MD5 implementations. The two algorithms are easily
distinguishable by their profiles. In contrast, the execution times are similar,
making it difficult to distinguish them purely via timing. Note that the execution
times can differ depending on which port we contend for in the sibling thread. For
instance, MD5 takes roughly 50% longer on the Core i5 13600KF if we contend
for p1 in the sibling thread. Contrarily, SHA1 is not as drastically affected by
this effect.
Symmetric Ciphers. We also apply PortPrint to common symmetric ciphers,
again using side-by-side implementations from both Linux and OpenSSL. Al-
though their respective cipher versions often share assembly-level optimizations,
we find that they still show distinct port contention profiles. For illustrative pur-
poses, Figure 4 shows profiles of several ciphers using 128 bit keys on a Kaby
Lake i7-7700K processor.

From looking at the profiles in Figure 4, it is evident that the port usage
for the Linux and OpenSSL versions of the same cipher are very similar. This
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Fig. 4: Port contention timeline when encrypting 4 kB of data with various sym-
metric ciphers on an Intel Core i7-7700K (Kaby Lake). Each curve shows the
average cost of probing a specific port at a given time (n = 2048).

is unsurprising, as both versions implement the same functionality and use the
same instruction set extensions. Moreover, all ciphers except the used version
of Aria are implemented in assembly, preventing the compiler from generating
vastly different instructions.

Across AES, ChaCha20, Camellia, and Aria (all used in counter mode, ex-
cept for ChaCha20, which is a stream cipher), different ports experience distinct
slowdowns. Since AES implementations rely heavily on the aesenc instruction,
which only uses p0 on Kaby Lake [2], that port is especially congested for AES.
In contrast, ChaCha20 calls vector shuffle instructions, primarily executed on
p5. Although Camellia and Aria appear more similar overall, p1 shows more
significant contention with Camellia, almost doubling its encryption latency rel-
ative to Aria when this port contended. Moreover, when comparing Linux and
OpenSSL implementations of the same cipher, the profiles remain nearly iden-
tical, likely due to the use of the same architecture-specific instructions and
minimal compiler-driven changes.
Classification Performance. To automatically distinguish between all 17
implementations (including hash functions and ciphers), we record 1024 profiles
per implementation and split them into training and test sets with a 25% test
set ratio. We train a multi-label Random Forest classifier on the training set
and use the test set for cross-validation. This results in an average 1 vs. all F1

score exceeding 99% on all three CPUs, demonstrating that the port contention
profiles can be easily distinguished, even for different implementations of the
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same algorithm. Moreover, when repeating this test in a configuration where
each of the 1024 samples is the average of 16 separate profiles, we achieve perfect
accuracy on the Core i3 8130U and Core i5 13600KF. Only 3 test samples are
falsely classified on the Ryzen 7 5700G, resulting in an F1 score of 99.9%. Hence,
PortPrint can reliably identify cryptographic hash algorithms if instruction usage
differs.

4.2 Spotting Vulnerable Implementations

This case study shows that PortPrint can distinguish between code versions
prone to specific vulnerabilities and code versions where these vulnerabilities are
fixed. For this purpose, we profile versions of WolfSSL with and without fixes
for CVE-2024-1544. This vulnerability, discovered by Wilke et al. [50], allows a
privileged attacker in a TEE setting to deduce bias in the most significant bits
of the ECDSA nonce k. This can enable the attacker to fully recover the private
key for certain curves. The root cause of this vulnerability is a control-flow
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side channel in the modular reduction-based truncation algorithm that WolfSSL
employs to generate k. To prevent this, WolfSSL also features an alternative
implementation using rejection sampling in more recent versions, which does not
allow this type of leakage. However, using rejection sampling over truncation is
still optional and may be disabled in many real-world deployment scenarios.

We demonstrate that PortPrint can reliably determine whether a WolfSSL
instance is prone to CVE-2024-1544 by observing ECDSA sign operations with
curve SECP160R1. As with our first case study, we observe the execution times
of our contention primitives and convert them into profiles with N = 4000 and
δ = 20 cycles. Averages of the resulting profiles for the Intel Core i5 13600KF are
partially displayed in Figure 5. We then evaluate our classifier on 1024 profiles
with a 25% test set ratio. Figure 6 shows the resulting F1 scores for the Core i3
8130U, the Core i5 13600KF, and the Ryzen 7 5700G. Again, the classifier’s per-
formance increases with the amount of profiles averaged into a sample. However,
even with just one profile per sample, the worst F1 score observed is 97.6%. We
reach perfect accuracy on all CPUs with 7 or more profiles per sample.

4.3 Identifying Spectre Mitigations

Finally, we explore PortPrint as a means to infer configuration details from higher
privilege domains. Specifically, an attacker may be interested in whether specific
Spectre mitigations are enabled before launching an attack. While kernels usually
disclose this information without requiring privileges, this is not always the case
for hypervisors. Thus, we perform this case study in a hardware-accelerated guest
VM with Xen v4.19 on an Intel Core i5 13600KF CPU. To gain information
about Spectre mitigations, we record a time stamp trace while invoking cpuid
in the sibling thread. Since Xen enables trapping for cpuid, this causes a VM
exit, allowing us to reliably observe a context switch from user mode to the
hypervisor and, thus, the execution of Spectre mitigations.

On the Core i5 13600KF, Xen uses four Spectre mitigations that can be
individually disabled: IBPB [24], STIBP [25], RSB Stuffing [13], and Intel’s
BHI_DIS_S predictor control setting [27]. Additionally, Xen hardens selected
branches with speculation barriers, which can also be disabled at boot time. We
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profile Xen in 7 configurations: one in which no mitigations are disabled, one in
which all are disabled, and one in which each of the aforementioned countermea-
sures is individually disabled. Since the cpuid handler takes roughly 2500 cycles
to execute, we convert the measured execution times into contention profiles with
N = 125 and δ = 20. For an example of a resulting contention profile, see Fig-
ure 7, which shows the profile for p0 with and without enabling the BHI_DIS_S
control. Although these profiles are virtually identical initially, they start to di-
verge after roughly 1500 cycles, with p0 slightly less contended if BHI_DIS_S
is disabled. This allows us to clearly distinguish between the two configurations,
even if there is no timing difference in the cpuid handler’s execution time.

We train our classifier like in the previous case studies, with 1024 profiles
per configuration and a 25% test set ratio. The results are shown in Figure 8.
While configurations without IBPB and STIBP are hard to distinguish from
configurations with all mitigations enabled, we achieve high accuracies for the
remaining configurations. For configurations without any mitigations, we even
achieve a perfect 1 vs. all F1 score with 32 profiles per sample. Furthermore, even
for configurations with more frequent misclassifications, we achieve accuracies
far above 50%. This demonstrates that there are still observable differences,
although more subtle than with the other configurations. We theorize that more
targeted profiling and classification methods can further improve accuracy.

4.4 Negative Result: Meltdown-type Attacks on Code

In addition to PortPrint, we evaluate whether transient-execution attacks have
similar capabilities on affected CPUs. While these attacks are powerful in leak-
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ing data, they have not been used for leaking code. We focus on Meltdown-
type attacks, as they do not rely on specific gadgets in the victim that have
to be exploited [29]. While Spectre-type attacks take advantage of mispredic-
tions at branch boundaries to disclose unauthorized information, Meltdown-like
techniques specifically target hardware protection checks to retrieve data the
CPU should not make accessible [32]. Various attacks in this category exploit
architectural or microarchitectural exceptions to leak from microarchitectural
buffers [9, 35, 38, 41, 44]. These attacks allow an attacker to transiently access
privileged content and exfiltrate it via covert channels like Flush+Reload.

We design experiments aiming to leak code on CPUs known to be suscepti-
ble to Meltdown-type attacks (e.g., Intel Core i7-7700K). We aim to align our
experiments with the original Meltdown [32] and Foreshadow [46] experiments,
i.e., we ensure that our targets are in the L1 cache. The main difference is that
we target the L1i instead of the L1d. However, even with the targeted code in the
L1i cache or executed on a sibling hyperthread, none of the existing Meltdown
techniques are successful. Moreover, we do not see any instruction leakage from
either hypervisor- or MPK-protected regions.

These observations are consistent with the absence of any documented mecha-
nism that links the instruction-fetch pipeline to the buffers exploited by Meltdown-
type attacks. Hence, attacks such as ZombieLoad [41], RIDL [38], or Fallout [10]
cannot leak code, as the targeted buffers only contain data.

Still, data written from protected code into memory can become susceptible
if it travels through Meltdown-vulnerable structures. In such scenarios, attackers
could still infer some aspects of the code, such as stack operations or access to
variables. However, the code itself cannot enter these structures during normal
execution unless explicitly handled as data. Outside of JIT-compiled environ-
ments, this behavior is rare. With XOM, it cannot occur at all, as the hardware
prevents data accesses to code.

5 Discussion

In this section, we discuss the security implications of PortPrint, its limitations,
possible mitigations, its applicability to other architectures, and related work.

5.1 Security Implications

Our results demonstrate that leveraging port contention enables attackers to
measure fine-grained instruction usage in execute-only environments. Conse-
quently, XOM’s promise of preventing unauthorized code inspection is weakened.
The capacity to detect specific cryptographic routines or even software versions
can inform attackers of potential vulnerabilities or known exploits. Moreover,
the information gained from fingerprinting protected code may serve as a step-
ping stone for deeper analyses of proprietary algorithms or intellectual property,
undermining the confidentiality that XOM aims to ensure.
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Moreover, our attack methodology is broadly applicable. Since the leakage
is inherent to the design of SMT, mitigating it is challenging. Therefore, the
hardware-based isolation properties that XOM and specific Trusted Execution
Environments rely upon are insufficient to guarantee that the sequence of exe-
cuted instructions remains hidden.
Limitations. A fundamental requirement of our approach is the presence of
SMT. If SMT is disabled or unavailable, PortPrint does not work. Moreover,
the information leakage from port contention is limited to the granularity of the
execution ports. While this level of detail can still reveal high-level instruction
patterns (such as the usage of AES-NI or other specialized CPU instructions),
reconstructing more specific aspects of the code might require further side chan-
nels or offline analysis. Thus, the approach is powerful for fingerprinting but does
not provide a complete code dump.
Mitigations. A straightforward mitigation is to disable SMT. By ensuring that
only one logical core shares execution resources at a time, we eliminate the source
of port contention. This approach, however, has practical downsides. Disabling
SMT can reduce overall system throughput, which might not be acceptable for
high-performance computing environments.
Different Architectures. Our experimental results concentrate on x86 CPUs.
However, our technique is not specific to x86. Any architecture with a comparable
SMT design and similarly structured execution ports could be susceptible to port
contention as used by PortPrint. Therefore, if other CPU vendors have similar
shared-resource features for multithreading, PortPrint is likely applicable.

5.2 Related Work

This section discusses related work on port contention and breaking XOM.
Port Contention. Port contention as a microarchitectural side channel is not
new and was initially analyzed by Aldaya et al. [3]. Similarly, SmotherSpec-
tre [6] is an example of using this side channel as the covert channel in a Spectre
attack, increasing the potential number of usable gadgets. Rokicki et al. [37]
demonstrate port contention in the web browser context, achieving a cross-
browser covert channel and demonstrating that port contention can remain ro-
bust against typical browser-based mitigations and noise. Covert Shotgun [15]
highlights the possibility of automatically constructing covert channels based on
microarchitectural contention. ABSynthe [18] presents an automated approach
for detecting instruction sequences that create contention leaks and uses neural
networks to extract cryptographic keys via carefully crafted instruction patterns.

Rokicki et al. [36] demonstrate that port contention can exist even with-
out SMT, relying on instruction-level parallelism. Moreover, they analyze the
portability of port contention across multiple Intel CPU generations, providing
methods to detect suitable instruction sequences automatically.

SQUIP [16] reveals that contention in CPU scheduler queues can leak fine-
grained information on modern microarchitectures, especially on machines that
divide the scheduler among different execution units. SQUIP allows co-located
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threads to extract cryptographic secrets. A follow-up paper shows that SQUIP
can also be exploited via JavaScript and across different AMD CPUs [16].

Our work extends these existing attack strategies by specifically targeting
execute-only memory and showing that even modern TEE or XOM configu-
rations are not immune to port contention. While these earlier works focused
on general data leakage, scheduler contention, or covert channel constructions,
our emphasis on fingerprinting specific code segments within protected environ-
ments highlights the need for broader defenses. In particular, the applicability
of port contention to settings where code is inaccessible, and the possibility to
fingerprint cryptographic routines has not been explored to this extent.
Breaking Execute-only Memory. The concept of XOM first appeared in the
Multics operating system on the GE 645 mainframe [12], where it was used to
conceal sensitive code such as classroom grading programs. Early systems contin-
ued using XOM primarily for privacy preservation, but its scope later expanded.
Yarvin et al. [52] showed how “anonymity” in a 64-bit address space could fa-
cilitate inter-domain communication while preventing address scans, motivating
execute-only protections. Lie et al. [31] introduced a memory-encryption-based
scheme to thwart code tampering and unauthorized redistribution, a precursor
to modern trusted execution environments (TEEs) [19,28].

Despite these protections, recent studies show that XOM can be undermined
by advanced microarchitectural and speculation-based techniques. For instance,
Schink et al. [39] highlight how firmware protected by microcontroller-level XOM
remains vulnerable through shared CPU and SRAM resources, enabling full code
recovery. In contrast to Schink et al. [39], we target modern x86 CPUs and not
small microcontrollers. Göktas et al. [17] demonstrate a “speculative probing”
approach that circumvents strict kernel-level defenses by exploiting speculation
as a crash-free mechanism to leak code layout information. Our main difference
to Göktas et al. [17] is that we do not rely on gadgets inside the victim.

6 Conclusion

We showed that modern protection mechanisms, including state-of-the-art XOM
and TEEs (Intel SGX, Intel TDX, AMD SEV), cannot entirely prevent attack-
ers from inferring which instructions a program executes. Our proof-of-concept
implementation demonstrated that port contention enables accurate identifica-
tion of cryptographic algorithms, library variants, and system configurations,
even uncovering vulnerabilities such as CVE-2024-1544 or Spectre mitigations in
Xen. Our negative result regarding Meltdown and Foreshadow further highlights
that these transient execution attacks can only leak data rather than protected
instructions.
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A Evaluation Setups

Table 1 lists the setups we use for evaluation, including the CPU, microcode
version, and operating system.

B Contention Primitives

Our contention primitives use the instructions listed in Table 2. Note that the
contention primitives for Skylake are also applicable to later Skylake-based mi-
croarchitectures, such as Kaby Lake [2]. Similarly, the primitives for Golden Cove
apply to microarchitectures like Alder Lake and Sapphire Rapids [26].

C Crypotographic Alogorithms

See Table 3 for the implementations of cryptographic algorithms used in Sec-
tion 4.1. We compile implementations written in C with support for SSE3 using
GCC v12.2.0 and optimization level -O3. For ciphers, we only invoke the encryp-
tion functions.

CPU Microcode Operating System

Core i3 8130U 0xf6 Ubuntu 22.04 LTS w. Linux v5.15.0
Core i5 13600KF 0x12b Debian 12 w. Linux v6.1.0
Xeon Gold 6526Y 0x21000283 Ubuntu 24.04 LTS w. Linux v6.8.0
Ryzen 7 5700G 0xa50000d Ubuntu 22.04 LTS w. Linux v5.15.0
EPYC 7252 0x830107c Ubuntu 22.04 LTS w. Linux v5.15.0

Table 1: Overview of used CPUs with microcode and operating system.



20 Hornetz et al.

Port(s) Skylake Golden Cove

p0 aesenc xmm, xmm vrcpps xmm, xmm
p06 ror r64, i8 ror r64, imm8
p1 crc32 r64, r64 crc32 r64, r64
p5 vpermd ymm, ymm, ymm vextractf128 xmm, ymm, i8

Port(s) Zen 3

div idiv r8l
alu03 cmovz r64, r64
alu1 imul r64, r64
alu12 ror r64, i8
fp01 vbroadcastsd ymm, xmm
fp1 vpinsrq xmm, xmm, r64, i8
fp12 vpshuflw xmm, xmm, i8
fp45 vmovmskps r64, ymm

Table 2: Instruction ports for Skylake, Golden Cove, and Zen3.

Algorithm Source Language Extensions

AES-128-CTR (HW) OpenSSL v3.2.1 ASM AES-NI
AES-128-CTR (HW) Linux v6.6.8 ASM AES-NI
AES-128-CTR (SW) OpenSSL v3.2.1 C N.A.
Aria-128-CTR OpenSSL v3.2.1 C N.A.
Aria-128-CTR Linux v6.6.8 C N.A.
Camellia-128-CTR OpenSSL v3.2.1 ASM x64
Camellia-128-CTR Linux v6.6.8 ASM x64
ChaCha20 OpenSSL v3.2.1 ASM SSE3
ChaCha20 Linux v6.6.8 ASM SSE3
MD5 OpenSSL v3.2.1 ASM x64
MD5 Linux v6.6.8 C N.A.
SHA1 OpenSSL v3.2.1 ASM SHA-NI
SHA1 Linux v6.6.8 ASM SHA-NI
SHA256 OpenSSL v3.2.1 ASM SHA-NI
SHA256 Linux v6.6.8 ASM SHA-NI
SHA3-256 OpenSSL v3.2.1 C N.A.
SHA3-256 Linux v6.6.8 C N.A.

Table 3: Implementations used for the case study in Section 4.1.


