
Talk: GlueZilla: Efficient and Scalable Software
to Hardware Binding using Rowhammer

Ruben Mechelinck1[0000−0002−7597−6222], Daniel
Dorfmeister2[0000−0002−2718−6007], Bernhard Fischer2[0000−0001−9737−0056],

Stefan Brunthaler3[0000−0001−9766−4871], and Stijn
Volckaert1[0000−0001−5594−7742]

1 Distrinet, KU Leuven, Belgium
{ruben.mechelinck,stijn.volckaert}@kuleuven.be
2 Software Competence Center Hagenberg, Austria
{daniel.dorfmeister,bernhard.fischer}@scch.at

3 µCSRL, CODE Research Institute, University of the Bundeswehr Munich, Germany
brunthaler@unibw.de

Abstract. Industrial-scale reverse engineering affects the majority of
companies in the mechanical and plant engineering sector and imposes
significant economic damages.Reverse engineering mitigations try to in-
crease the cost involved in reverse engineering until it surpasses the cost
of actual development. Although these mitigations exist, economic dam-
age has not been impacted, indicating that they have failed to address
the problem.At present, most industrial-scale reverse engineering efforts
are spent on replicating hardware components since software can often
be copied verbatim without any reverse engineering effort.
In this talk, we discuss GlueZilla [6], our recently published system
that binds software to hardware through user-space rowhammer PUFs
on commodity hardware [5,4,7,2,1,8,3]. GlueZilla relies on unclonable
machine features and thereby forces counterfeiters to reverse-engineer
both the hardware and the software, driving up the reverse-engineering
cost.
In GlueZilla, a program has two fully functional modes of operation.
In the intentional mode, GlueZilla performs the expected operations
as described by the original source code, whereas in the unintentional
mode, the execution differs at unsuspicious-looking junction points. For
example, the program could follow conditional branches in the wrong
direction, or call different targets at call sites. The unintentional mode
should not exhibit obvious signs that something is wrong with the pro-
gram, e.g., program crashes.
The goal of GlueZilla is to only allow execution of the intentional mode
on one selected associated machine instance. To this end, GlueZilla
transforms the program at compile time to exhibit the unintended be-
havior by default. At run time, it uses targeted rowhammer-induced bit
flips at the junction points to recreate the intentional execution mode in
memory, as shown in Figure 1.
GlueZilla uses rowhammer because of its unique properties.Since the
rowhammer-induced bit flip pattern is unclonable, GlueZilla ensures

2 R. Mechelinck et al.

int a = 42;
if(a != 5) {
 ... }

Junction Instruction:
Unintentional Form

Junction Bit

0b10000100

 c7 45 ec 2a 00 00 00 mov [rbp-0x14],0x2a
 83 7d ec 05 cmp [rbp-0x14],0x5
 0f 84 <offset> je <offset>

Junction Instruction:
Intentional Form

 c7 45 ec 2a 00 00 00 mov [rbp-0x14],0x2a
 83 7d ec 05 cmp [rbp-0x14],0x5
 0f 85 <offset> jne <offset>

0b10000101

Intentional Program

1 2

Unintentional ProgramUnintentional
Source Code

Fig. 1. At run time, GlueZilla uses rowhammer to transform junction instructions
from their unintentional into their intentional form.

the intentional execution mode is only reconstructed on the associated
machine. If the software runs on any other machine, including exact
clones of the associated machine, the required bit flips are absent and
the program remains in its unintentional mode. For the same reason, dy-
namic analyses are ineffective on cloned machines as the intended opera-
tions are not performed on cloned machines. Rowhammer, furthermore,
allows for stealthy memory changes in the whole memory region without
explicit write operations performed by the CPU. This eliminates various
dynamic analysis techniques which typically rely on the CPU to intercept
certain operations or code changes. Dynamic tools that modify the mem-
ory layout also interfere with GlueZilla as the junction points will no
longer reside in the required rowhammer-susceptible memory locations.
Additionally, the static binary is only an image of the unintentional pro-
gram and lacks information about the code changes required to recreate
the intentional code, rendering static binary analysis unprofitable.
The published version of GlueZilla has a few clear disadvantages. Nu-
merous factors, such as temperature and chip aging, might undermine
the reliability of bit flips. The current design does not tolerate unreliable
bit flips because they might result in an incomplete transition to the
intentional program form. Furthermore, Rowhammer can only flip bits
in one direction, thus leaving the whole intentional program in memory
throughout execution. This makes GlueZilla susceptible to memory
snapshotting attacks. We will conclude this talk by discussing our on-
going work that aims to eliminate these weaknesses by using a micro-
architectural attack that invalidates the in-memory copy of the program,
whilst leaving its functionality intact.

Keywords: Rowhammer · Micro-architectural Attacks · Software Pro-
tection.

References

1. Cojocar, L., Razavi, K., Giuffrida, C., Bos, H.: Exploiting correcting codes: On the
effectiveness of ECC memory against Rowhammer attacks. In: S&P (2019)

2. Jattke, P., van der Veen, V., Frigo, P., Gunter, S., Razavi, K.: Blacksmith: Scalable
rowhammering in the frequency domain. In: S&P (2022)

3. Jattke, P., Wipfli, M., Solt, F., Marazzi, M., Bölcskei, M., Razavi, K.: ZenHammer:
Rowhammer attacks on AMD Zen-based platforms. In: USENIX Security (2024)

4. Kim, J.S., et al.: Revisiting RowHammer: An experimental analysis of modern
DRAM devices and mitigation techniques. In: ISCA (2020)

Talk: GlueZilla: Efficient and Scalable Software to Hardware Binding 3

5. Kim, Y., et al.: Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. In: ISCA (2014)

6. Mechelinck, R., et al.: Gluezilla: Efficient and scalable software to hardware binding
using rowhammer. In: DIMVA (2024)

7. Orosa, L., et al.: A deeper look into RowHammer‘s sensitivities: Experimental analy-
sis of real DRAM chips and implications on future attacks and defenses. In: MICRO
(2021)

8. Schaller, A., Xiong, W., Anagnostopoulos, N.A., et al.: Intrinsic rowhammer PUFs:
Leveraging the Rowhammer effect for improved security. In: HOST (2017)

	Talk: GlueZilla: Efficient and Scalable Software to Hardware Binding using Rowhammer

