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Abstract. Constant-time code is considered the gold-standard for security-
critical applications such as cryptographic libraries. However, even constant-
time code is vulnerable to advanced memory-centric side-channels such
as ciphertext side-channels, silent stores and leakage from data memory-
dependent prefetchers. Previous work has explored masking of the plain-
text and the rotation of memory locations, with mixed results.
In this talk, we discuss the strengths and weaknesses of current mitiga-
tion approaches from the recent literature and propose interleaving as
a new building block for mitigation implementations. We then consider
the design choices, requirements, and the practical complexities involved,
and discuss to what extent interleaving can be used to protect against
different memory-centric side-channels.
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1 Introduction

Memory-centric side-channel leakages endanger the secrecy of data that is writ-
ten to memory without further protection, even if code adheres to standards such
as constant-time programming [1,6]. Even without secret-dependent branches or
memory accesses, there are various ways to inadvertently gather information
about secrets. For instance, the deterministic memory encryption of whole-VM
trusted execution environments (TEEs) is insufficient to protect secret keys due
to ciphertext side-channels [8]. Similarly, microarchitectural optimizations like
silent stores invalidate the constant-time properties of code, thus information
may be disclosed through memory-centric side-channels [3]. Such disclosed in-
formation often even results in leakage of whether a certain written value equals
another value already present in memory. In the worst case, this can leak, for
example, secret keys bit by bit.

The common denominator of the aforementioned side-channel leakages is
their root cause: Values are written to memory without any protection in place.
For mitigating ciphertext side-channels and silent store leakage, ensuring fresh-
ness of the newly written values inside 16-byte blocks suffices. To ensure that
read accesses to data do not leak information about the data stored in memory,
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the activation criteria of data memory-dependent prefetchers (DMPs) need to be
hindered. Thus, protecting against DMP leakage requires architecture-dependent
transformations of the written value so that each 8-byte block contains a pro-
tection measure on the first write access [2,7].

2 Countering Memory-Centric Side-Channel Leakage via
Interleaving

Introducing freshness of newly written values can be done in three ways [4]: By
limiting the reuse of memory locations, by adding random masks to the plaintext,
and by interleaving data with counters. Applying address rotations before writing
data to memory has been deemed impractical for general applications [4]. To
mitigate ciphertext side-channel leakage, Cipherfix [8] employs masking to ensure
freshness of values written to memory. While Cipherfix can also protect against
leakage from data memory-dependent prefetchers, the overheads introduced by
the binary-level mitigation are high. To protect against leakage from silent stores,
cio [3] adds tailored transformations to the code which ensure that there is an
additional write with a proven different value in between two memory writes
to the same address. In that case, the proposed mitigations against silent store
leakage do not mitigate ciphertext side-channel leakage.

In this talk, we therefore discuss interleaving of (secret) data with counters
to protect against the root cause of multiple memory-centric leakages at once.
As shown in Figure 1, 16-byte blocks are split into two halves. One half contains
an 8-byte counter and the other half is filled with a data chunk. Increment-
ing the counter on each memory write enforces constantly changing plaintexts
which in turn mitigates leakage from ciphertext side-channels and silent stores.
Despite some practical constraints like necessary source code adjustments, the
performance and security guarantees are promising. For data memory-dependent
prefetchers, interleaving must focus on architecture-specific leakage within a
smaller block size, making the technical implementation much more complex
and less generic than for the other memory-centric side-channel leakages.

Interleaving: Implementation & Evaluation We propose an implementation of
interleaving at the middle end compiler level in order to facilitate adjustments
of the memory layout. However, this compiler stage with eased memory layout
adjustments does not yet have knowledge of all memory writes that are present
in the resulting binary, e.g., due to high register pressure during the later regis-
ter allocation stage. Therefore, we propose to complement the instrumentation
with a binary level memory tracing tool that checks the protected binary for
leaky memory writes. For using the proposed implementation, the developer of
a cryptographic library needs to mark the outmost function of the code to be
protected with a clang function attribute. An overview of the procedure is given
in Figure 2.

Our evaluation of the interleaving implementation for mitigating ciphertext
side-channels and silent stores considers practical constraints, performance, and
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Fig. 1: Interleaving data with counter values in memory. The subfigures (taken
from [5]) show different cases of application and resulting block and data chunk
sizes. In 1a and 1b, each 16-byte block is split into an 8-byte counter and re-
maining data. The counter value is incremented on each memory write. In 1c,
8-byte blocks are split into 4-byte chunks containing data (di) or data memory-
dependent prefetching protection (xi).
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Fig. 2: High-level overview of the proposed interleaving implementation.

security. The amount of necessary source code adjustments to integrate the mit-
igation into cryptographic libraries is higher compared to applying masking.
However, despite these practical constraints, interleaving offers advantages in
both the performance and security guarantees. We conclude that interleaving
introduces a trade-off between practical applicability and versatility on the one
hand, and improved performance and security results on the other. For data
memory-dependent prefetchers, interleaving must focus on leakage within 8-byte
blocks that can potentially be dereferenced as pointers. The technical realization
is in this case even more complex than for ciphertext side-channel or silent store
leakages as data chunks larger than 4 byte have to be split and recombined. We
leave the implementation of this necessary adaption for future work.

Further reading: Some of the findings presented in this talk are also described
in a preprint available at [5].
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