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Abstract

As quantum computing advances, Post-Quantum Cryptog-
raphy (PQC) schemes are adopted to replace classical algo-
rithms. Among them is the Stateless Hash-Based Digital Sig-
nature Algorithm (SLH-DSA) that was recently standardized
by NIST and is favored for its conservative security basis.

In this work, we present the first software-only universal
forgery attack on SLH-DSA, leveraging Rowhammer-induced
bit flips to corrupt the internal state and forge signatures.
While prior work targeted embedded systems and required
physical access, our attack is software-only, targeting com-
modity desktop and server hardware, significantly broadening
the threat model. We demonstrate full end-to-end attacks
against SLH-DSA in OpenSSL 3.5.1, achieving universal
forgery for the SHAKE-128f (deterministic), SHA2-128s, and
SHAKE-192f (randomized) parameter sets after one hour (de-
terministic) or eight hours (randomized) of hammering and
post-processing ranging from minutes to an hour, and show-
ing theoretical attack complexities for most parameter sets.
Our post-processing is informed by a novel complexity anal-
ysis that, given a concrete set of faulty signatures, identifies
the most promising computational path to pursue.

To enable the attack, we introduce SWAGE, a modu-
lar and extensible framework for implementing end-to-end
Rowhammer-based fault attacks. SWAGE abstracts and au-
tomates key components of practical Rowhammer attacks.
Unlike prior tooling, SWAGE is untangled from the attacked
code, making it reusable and suitable for frictionless analysis
of different targets. Our findings highlight that even theoret-
ically sound PQC schemes can fail under real-world condi-
tions, underscoring the need for additional implementation
hardening or hardware defenses against Rowhammer.

*Work partially conducted while at PQShield.
†Work partially conducted while at University of Luebeck.

1 Introduction

With the accelerating progress in practical quantum com-
puting, the cryptographic community is undergoing a ma-
jor transition toward the adoption of Post-Quantum Cryptog-
raphy (PQC). In response, NIST has released several PQC
standards, including FIPS 205 [32] that describes the State-
less Hash-Based Digital Signature Algorithm (SLH-DSA)
signature scheme (known as SPHINCS+ [6] prior to stan-
dardization). However, the adoption of strong cryptographic
primitives alone is not sufficient to achieve security in real-
world deployments. Besides being cryptographically sound,
the implementation must also be able to withstand the various
(micro)architectural side-channel and hardware-level attacks
bedeviling modern CPUs.

One prominent and persistent threat is the Rowhammer
vulnerability. Since its discovery in 2014 [25], Rowhammer
has evolved from a reliability issue into a powerful attack
vector capable of inducing targeted bit flips in Dynamic Ran-
dom Access Memory (DRAM) through frequent accesses to
adjacent memory rows. Despite years of developing counter-
measures, Rowhammer remains a viable threat even on the
most recent DDR5 memory modules [10, 13, 21, 22]. Over
the past decade, it was shown how to leverage Rowhammer
to tamper with isolation, escalate privileges, and leak secret
data [4,12,18,28,38,42]. Rowhammer-based attacks can also
operate remotely via the browser or network requests [17,30].

As quantum-resilient schemes become part of the critical
infrastructure, it becomes vital to understand their resilience
against practical fault attacks. In this work, we examine the
vulnerability of the NIST-standardized post-quantum signa-
ture scheme SLH-DSA to Rowhammer-based fault attacks.
As a hash-based scheme, SLH-DSA derives its resistance
against large-scale quantum computers solely from the secu-
rity properties of hash functions, making it an attractive and
conservative choice. Unlike other standardized hash-based
signatures (XMSS and LMS) [11], for which state-keeping
is essential to maintain security, SLH-DSA is stateless, en-
abling it to act as a drop-in replacement for existing signa-
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ture schemes. While prior work demonstrated that physical
fault injection can enable universal forgeries against SLH-
DSA [14], we show for the first time that a similar attack
is feasible entirely in software, requiring no physical access.
This significantly broadens the attack surface.

We demonstrate attacks against the SLH-DSA implementa-
tion in OpenSSL 3.5.1 [33], showing practical forgery for the
SHAKE-128f (deterministic), SHA2-128s and SHAKE-192f
(randomized) parameter sets. We show that an attacker can
universally forge signatures for the SLH-DSA-SHAKE-192f
parameter set after eight hours of Rowhammer attack and 1417
seconds of post-processing. Besides practical forgery attacks,
we show theoretical attack complexities for most parameter
sets. For SLH-DSA’s deterministic signing mode, which is
not the default setting in OpenSSL but specified and allowed
by the FIPS 205 standard, we achieve universal forgery for
the SLH-DSA-SHAKE-128f parameter set after one hour of
Rowhammer and 151 seconds of post-processing.

A given collection of faulty signatures leaves the attacker
with several potential SLH-DSA subcomponents to target dur-
ing the post-processing phase. To select the target with the
lowest expected runtime, we derive, for the first time, the of-
fline attack complexity for a concrete set of faulty signatures.

Performing end-to-end Rowhammer attacks in practice is
non-trivial and entails several low-level challenges: First, the
attacker needs to reverse-engineer the mapping from physical
addresses to DRAM addresses for the CPU that they are us-
ing. Based on that, they must find a hammering pattern that
bypasses the Target Row Refresh (TRR) mitigation on the
used DIMM module. Hammering patterns require a certain
amount of physically contiguous memory. However, unpriv-
ileged Linux users do not have an API that guarantees the
allocation of such memory. Thus, for a realistic attack, the
adversary needs to resort to certain quirks of the Linux mem-
ory allocator and side-channels in the memory subsystem of
the CPU. Finally, the attacker needs to ensure that the victim
application places the attackable data structure in a memory
location they can manipulate through their hammering pattern.
While prior work [2, 7, 21, 28, 37] has addressed these steps,
the provided artifacts either only solve parts of the attack
chain or are closely coupled with the attacked application.

To provide a holistic solution, we introduce SWAGE, a mod-
ular and extensible framework for implementing end-to-end
Rowhammer-based fault attacks. SWAGE integrates modules
for each of the mentioned attacks steps and can easily be ap-
plied to different victim applications. In summary, our frame-
work and the presented attack highlight the need to address
Rowhammer and similar threats in the post-quantum era.

1.1 Our Contributions

• We showcase a realistic Rowhammer attack against all
parameter sets in OpenSSL’s SLH-DSA implementation
in both deterministic and randomized signing modes,

including the end-to-end forgery of signatures for NIST
security levels 1 and 3.

• We provide a detailed vulnerability analysis of SLH-
DSA in the presence of Rowhammer-based faults.

• We derive the offline complexity given concrete faulty
signatures, identifying the most promising forgery target.

• We implement SWAGE, a modular Rowhammer attack
framework to ease the implementation of Rowhammer
attacks. We make our source code available on Github 1.

1.2 Responsible Disclosure
We officially reported our findings to the OpenSSL security
team on August 04, 2025. Our report was acknowledged on
August 07, 2025. We were informed that fault attacks are out-
side of OpenSSL’s threat model, and permission was granted
to release our findings.

2 Background

This section provides the technical context for understanding
our Rowhammer-based attack on the SLH-DSA scheme. We
begin by describing the relevant characteristics of modern
DRAM enabling Rowhammer attacks. We then summarize
the structure and operation of the SLH-DSA signature scheme,
highlighting components relevant to our attack strategy.

2.1 Memory Management
Physical memory is implemented as an array of Dynamic
Random Access Memory (DRAM) cells, arranged in rows and
columns within banks, which are in turn grouped into ranks.
Each bank includes a row buffer that contains the value of the
most recently accessed row to speed up repeated read opera-
tions. A DRAM cell consists of a capacitor and a transistor;
the capacitor’s charge stores the bit’s value, and the transistor
provides access to the stored value. As the charge leaks over
time, the DRAM cells must periodically be refreshed.

Modern operating systems (OS) use virtual memory to man-
age physical memory through a layer of indirection. Processes
work with virtual addresses that are then translated to physical
addresses be the Memory Management Unit (MMU) with the
help of page tables. After the translation of the virtual address
to a physical address, the physical address is mapped to a
physical location in DRAM. This mapping is CPU-specific
and proprietary but can be reverse-engineered [35, 44].

When a process requests memory, the OS needs to select
the physical pages to back it. Linux relies on the buddy allo-
cator strategy, which manages contiguous physical memory
in buckets of increasing size. These can be split for smaller
allocations and merged again when memory gets freed [7].

1https://github.com/UzL-ITS/SLasH-DSA
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Figure 1: A WOTS+ signature for message m = (1,0,2,3)
with checksum c = (1,2). H and F are hash functions, nodes
represent hash function outputs. The nodes that are composed
to produce the signature are shown in green . The public key
is a hash of the chain endpoints. Here, chain length w = 4,
message length ℓ1 = 4, and checksum length ℓ2 = 2.

2.2 Rowhammer

Rowhammer, discovered by Kim et al. [25], is a hardware
vulnerability in DRAM that allows an attacker to flip bits
in inaccessible victim rows by repeatedly accessing a set of
neighboring aggressor rows that are under their control. Af-
ter having mostly been considered a reliability issue at first,
Rowhammer has been used to attack cryptographic schemes
and circumvent OS isolation [4,12,18,28,38]. Manufacturers
implemented various countermeasures such as Target Row Re-
fresh (TRR) in DDR4 memory, which identifies unusual mem-
ory access patterns and then issues refresh commands for sus-
pected victim rows. However, research has shown that more
complex hammering patterns can overload the access tracking
in TRR, re-enabling Rowhammer attacks [13, 21]. While the
DDR5 standard has more principled mitigation [8, 23], recent
work [22] reports to have found at least one vulnerable setup.

2.3 SLH-DSA

SLH-DSA is a hash-based digital signature scheme standard-
ized by NIST in 2024 [32]. The building blocks of SLH-DSA
are again hash-based signature schemes: (1) the few-time
signature scheme Forest of Random Subsets (FORS), and
(2) a hierarchical organization of the many-time signature
scheme eXtended Merkle Signature Scheme (XMSS). The
XMSS trees, in turn, each manage a number of hash-based
one-time signature scheme Winternitz One-Time Signature
Scheme+ (WOTS+) instances. Although FORS is an essential
component of SLH-DSA, its specification is not relevant to
understand the attack described in this paper. For clarity, we
omit its specification and refer to the FIPS 205 standard [32].

pkX = H(h1,2|h3,4)

h1,2 = H(h1|h2)

h1 = H(pkW
1 ) h2

h3,4

h3 h4

Figure 2: A Merkle tree of height 2 with 22 = 4 leaves. The
leaf hi represents the hash of a WOTS+ key pkW

i . A parent
node hi, j represents the hash of the concatenation of its chil-
dren hi,h j. The final hash is the root node pkX and represents
the public key. The nodes forming the authentication path
auth(pkW

1 ) are highlighted with blue rectangles.

2.3.1 The Winternitz One-Time Signature Scheme+

The Winternitz One-Time Signature Scheme+ (WOTS+) is a
hash-based one-time signature scheme. It consists of a series
of hash chains, for which the starting points, together, can be
considered to be equivalent to the WOTS+ secret key. To sign
a message, a hash function is applied to each starting point a
message-dependent number of times, as depicted in Figure 1.
The message to be signed is appended with a checksum on
this message, to avoid, e.g., an attacker to forge a signature
on m1 = (1,1,2,3) given the signature on m0 = (1,0,2,3). A
WOTS+ instance is characterized by the security parameter
n, indicating the output size of the hash function, and the
message block size lgw, which determines the chain length
w = 2lgw . Derived from lgw and n are the number of message
chains ℓ1 and checksum chains ℓ2.

2.3.2 eXtended Merkle Signature Scheme (XMSS)

XMSS is a hash-based signature scheme that is able to sign
more than one message by organizing a large number of
WOTS+ key pairs as a Merkle tree (Figure 2). The WOTS+

public keys are the leaves of the Merkle tree. An XMSS
signature on a message consists of the WOTS+ signature on
the message, and the authentication path that allows a verifier
to recompute the Merkle tree root from the WOTS+ public
key that was used, confirming its legitimacy. Although XMSS
can sign more than one message, it must be ensured that the
same WOTS+ instance is not used to sign more than one
message, i.e., XMSS is a stateful scheme. An XMSS instance
is characterized by the security parameter n and tree height
h′, implying 2h′ WOTS+ key pairs as leaves.

XMSS instances can be organized in a hierarchical fashion
as hypertrees, or tree of trees. In this case, the Merkle tree
root (and hence the public key) of XMSS level l is signed by
one of the leaves of XMSS level l +1.
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(b) Grafting an XMSS tree.

Figure 3: Grafting tree attack on SLH-DSA [14].

2.3.3 SLH-DSA

SLH-DSA uses FORS and XMSS as building blocks to con-
struct a practical scheme that can sign many different mes-
sages and is stateless, i.e., SLH-DSA does not require keeping
track of which secret keys were already used.

First, the message is signed using a FORS key pair. The
FORS signatures’s public key is signed using an XMSS hy-
pertree. The root node of the top-level hypertree corresponds
to the public key of the scheme. The particular FORS key
pair to use and the resulting path through the hypertree of
XMSS trees is determined by a value R, which is the output of
a hash of the secret key and the message to be signed (deter-
ministic mode), or the secret key, the message, and additional
user-provided entropy (randomized mode). An SLH-DSA sig-
nature consists of a FORS signature of the message and a
series of XMSS signatures proving the FORS key’s validity.

SLH-DSA is standardized with the hash functions SHA-2
and SHAKE. The standard describes both small and fast vari-
ants (trading off the number of XMSS levels and tree size)
and in different security categories (with, respectively, 128-
bit, 192-bit, and 256-bit hash output lengths). For the detailed
specification of each variant, we refer to FIPS 205 [32].

2.4 Grafting Tree Attack

Under correct operation, the design of SLH-DSA ensures
that each WOTS+ secret key is only used to sign one single
public key root. This invariant is crucial to uphold, since
the security of WOTS+ degrades rapidly as the number of
signatures with the same secret key increases. The grafting
tree attack [9] builds on this observation. By triggering faulty
computations during signature generation, it causes the same
WOTS+ secret key of a given XMSS level to sign multiple
different public key roots of previous XMSS levels. Hence,
it exposes additional WOTS+ secret values (cf. Figure 1),
rendering the WOTS+ instance compromised. In particular,
during the computation of an XMSS tree, the attacker injects
faults such that the root of the tree gets corrupted (Figure 3a).
Note that any fault during the entire XMSS computation leads
to the corruption of its root. The faulty root is then signed
by the next level in the hypertree using WOTS+. When the
process is repeated, the attacker can gather multiple signatures
with the same WOTS+ secret key.

The attacker can use a compromised WOTS+ instance as in
Figure 3b. With enough signatures, the attacker can use a com-
promised WOTS+ instance (in layer l∗+1) to sign a grafted
(i.e., fully attacker-generated) XMSS tree (in layer l∗). There
is some offline computation effort to arrive at a grafted tree
for which the public key is compatible with the values that
are leaked from the compromised WOTS+ instance. As each
additional signature potentially reveals new WOTS+ chain
values, obtaining more faulty signatures that visit the same
WOTS+ key pair reduces the tree grafting complexity. The
most straightforward version of the attack uses a valid (uncor-
rupted) signature in addition to the faulted signature(s), but
prior work showed that this is not a strict requirement [14].

From the point of view of the signature verifier, the grafted
tree appears valid, as it contains a valid signature from the
WOTS+ key pair in layer l∗ + 1. Since the grafted tree is
fully attacker-controlled, including its own secret keys, an
attacker uses a grafted tree to produce a forgery for any chosen
message that visits the compromised WOTS+ node.

3 Threat Model

We adopt the standard Rowhammer attack model that differ-
entiates between an offline phase and an online phase. During
the offline phase, the attacker has unfettered access to a repli-
cated target system to prepare the attack.
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(Section 4.1)

❍ DRAMA [35]
❍ Xiao et al. [44]

● CONFIGFILE
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Figure 4: Flowchart showing the steps of a Rowhammer attack
using SWAGE. ❍ depicts offline phase usage of the strategy,
● stands for online usage and ◗ is a strategy used in both
offline and online phase of an attack.

In the online phase, the attacker’s access is heavily re-
stricted, as detailed in the following. The attacker can execute
code (e.g., SWAGE) with user-level privileges on the target sys-
tem. They have access to high-resolution timers like rdtscp.

The target system uses DDR4 memory, possibly with TRR
mitigation. The attacker is able to co-locate their code with the
victim on the same logical CPU core [2, 28, 36]. Finally, we
assume that the attacker can influence when the victim process
allocates the memory for the targeted data structure, as, e.g.,
enabled by the fork-on-connection strategy used in security-
focused server processes like OpenSSH [28] or swapping due
to memory pressure [36].

4 Swage: A Modular Universal End-to-End
Rowhammer Attack Framework

Conducting Rowhammer attacks in practice is challenging:
As the attack interacts with different aspects of the target
system, many moving parts need to be considered. Though a
number of tools have been proposed to facilitate Rowhammer
attacks, they often cover only a specific aspect of the attack,
such as finding reproducible hammering patterns or reverse-
engineering the physical memory layout [7,13,21,35]. Most of
the time, the software design of these tools is tightly coupled
to the evaluation scenario of the respective paper, making it
difficult to reuse them in an end-to-end Rowhammer attack.
We propose SWAGE, a novel modular end-to-end framework
for Rowhammer attacks. SWAGE is implemented in Rust, C,
and Python, and is designed to be modular and extensible. We

provide a SWAGE artifact as an open-source project and invite
the community to contribute to its development.

Figure 4 shows the modular architecture of SWAGE. Most
modules have multiple instantiation options that allow choos-
ing between easy prototyping of attacks by using root priv-
ileges or performing realistic attacks that only require user
space access. In the following, we describe each module and
its role in the attack workflow in more detail.

4.1 DRAM Inspector
In order to conduct a Rowhammer attack, the attacker needs
information about the locality in memory to arrange the ag-
gressor rows and the victim row for their attack. The DRAM
INSPECTOR module provides information about the physi-
cal memory layout of the target system. When accessing a
memory location, the memory controller applies a memory
mapping function to the physical address. This function is spe-
cific to any given CPU generation and usually not disclosed
by manufacturers. However, there exist side-channel attacks
that can be used to reverse-engineer the physical memory lay-
out. For this, SWAGE employs a software suite combining the
outputs of both DRAMA [35] and Xiao et al. [44] for improved
reliability. This step only needs to be done once per targeted
CPU during the offline phase. Afterward, the mapping can be
loaded from a configuration file.

4.2 Allocator
To construct the memory access patterns required for
Rowhammer, the attacker needs to be able to allocate physi-
cally contiguous memory. The ALLOCATOR module provides
a unified interface for allocating contiguous memory blocks.
SWAGE comes with two implementations for allocating these
blocks, supporting both attack prototyping with elevated priv-
ileges and realistic scenarios. For the former, the attacker can
configure the Linux kernel to reserve memory for huge pages
at boot time and then allocate them via the HUGEPAGE in-
stantiation of the ALLOCATOR module to get access to vast
amounts of physically contiguous memory as demonstrated
by prior work [21].

For realistic scenarios, the attacker has access to the
SPOILER instantiation. While the Linux allocator does not
make any guarantees on physical contiguous memory for
larger chunks of allocated memory, its use of the buddy al-
locator strategy makes it highly likely that some parts of the
allocated memory are indeed physically contiguous [28]. Fol-
lowing [2], we use the Spoiler side-channel [19] to reveal all 1
MiB blocks of contiguous memory inside our allocated buffer.
Note that their approach does not give information on the
positioning of these 1 MiB blocks relative to each other. As
discussed later, 1 MiB of contiguous memory may not always
suffice to find a hammering pattern. Thus, we use the row
buffer side-channel in combination with our already obtained
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information about the DRAM addressing function to reveal
which of the discovered 1 MiB blocks are contiguous and
form 4 MiB blocks of contiguous memory.

4.3 Hammerer
The HAMMERER module is the core of SWAGE and imple-
ments strategies to fuzz and replay Rowhammer patterns. The
BLACKSMITHFUZZ instantiation is a fork of the Blacksmith
fuzzer [21]. It is intended to be used in conjunction with the
HUGEPAGE memory allocation strategy to find reproducible
hammering patterns during the offline phase of the attack.
Our analysis shows that Blacksmith tends to generate patterns
that require large amounts of physically contiguous memory,
making them unsuitable in a realistic attack scenario. Thus,
we added a novel component that breaks up the hammering
pattern into chunks that only require 1 or 4 MiB of contiguous
memory and re-evaluates their reproducibility. Rapid attack
prototyping in the offline phase can be achieved with the DE-
VMEM backend: Instead of performing Rowhammer, it allows
to architecturally flip a bit in the targeted location by using the
Linux kernel’s /dev/mem interface to access arbitrary physi-
cal memory. In the online phase, the CONFIGFILE backend is
used to load and hammer a previously found pattern.

4.4 Orchestrator
The ORCHESTRATOR module implements the actual attack
against a victim process. As input from the previous stages,
it has access to a hammering primitive and a mapping to the
memory page P at which the hammering primitive will cause
a bit flip. The details of the victim process are abstracted by a
victim-specific wrapper that needs to implement four methods:
start, init, check, stop. To start the attack workflow, the
ORCHESTRATOR in parallel calls the start method and the
page injector. The start method may be used to trigger the
creation of the victim process or other initialization steps. The
page injector ensures that the victim uses the vulnerable page
P to store the data that the attacker wants to manipulate via
Rowhammer and will be discussed in Section 4.5. Afterward,
the ORCHESTRATOR calls the init method to synchronize
with the execution of the victim and start the Rowhammer
attack. The synchronization step could, e.g., involve triggering
the victim via a network request or the use of a cache attack.
Next, the check method is called to ascertain the attack’s
success, assuming the victim creates some kind of output
or otherwise observable behavior. Finally, the stop method
terminates the attack cycle.

4.5 Page Injection
Page injection refers to techniques to manipulate the Linux
memory allocator to return a specific, attacker-chosen mem-
ory page upon the next allocation. In the context of Rowham-

. . . 12 13 14 15 16 17 18 19 20 21 22 . . .

bank bit 0 ⊕
bank bit 1

⊕bank bit 2

⊕bank bit 3

⊕
bank bit 4

Figure 5: DRAM bank-selection mapping for the target sys-
tem. Bank bit 0 is taken directly from physical bit 13, while
bank bits 1-4 are computed as the XOR (⊕) of bit pairs
(b14⊕ b18, b15⊕ b19, b16⊕ b20, and b17⊕ b21), respectively.
Dots indicate omitted neighboring physical address bits.

mer, this enables the attacker to ensure that the victim places
the data structure exactly on the page that the attacker can
introduce bit flips in. SWAGE implements a technique from
prior work [2, 28] that exploits an optimization in the Linux
kernel allocator. The optimization consists of a per-CPU list
of memory pages that is consulted during memory allocation
before going to the main memory allocator. This can be ex-
ploited to inject a target page into a victim process co-located
on the attacker’s core. A recent novel page injection tech-
nique, RUBICON [7], combines page injection and eviction
strategies to implement cross-core page injection.

5 Evaluation of SWAGE

During the offline part of a Rowhammer attack, the attacker
collects information about the target. We evaluated the com-
ponents of SWAGE, experimentally verifying the reliability of
the attack primitives presented in Section 4. For evaluating an
attack on SLH-DSA, we conducted our SWAGE experiments
on a system with an Intel i5-6400 CPU and a single G.Skill
AEGIS 16 GB DDR4-2133 DIMM, running Ubuntu 20.04.6
with Linux kernel version 6.8.12-generic with default settings.
We target an implementation with attackable data residing
on the stack; the concrete instantiations of such data are dis-
cussed in Section 6. In the following, we describe the results
of our SWAGE analysis.

5.1 Reverse-Engineering the DRAM Address
Mapping

For a Rowhammer attack, an attacker needs to determine the
mapping of physical addresses to DRAM banks, rows, and
columns. SWAGE uses the row conflict timing measurements
to determine the physical mapping function running the al-
gorithms from both DRAMA [35] and Xiao et al. [44] for
improved reliability. The row mapping function for the target
system is simple: the row index is determined by physical
bits 18 to 29. Similarly, the column index is determined by
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physical bits 0 to 12. Figure 5 shows the reverse-engineered
bank mapping function for the target system. We verify the
findings by checking the timing of pairs of addresses with
same or different bank indices. As it shows no significant
outlier behavior, the mapping function is considered correct.

5.2 Contiguous Memory Allocation
We evaluated the SPOILER implementation in SWAGE by
repeatedly allocating a 4 MiB block using the ALLOCATOR
module. We configure the allocator to search for contiguous
memory blocks in a 2 GiB buffer. Repeating the allocation
experiment 100 times, we measured the elapsed time for the
memory allocation and the false-positive rate, i.e., the number
of times the allocator falsely identifies a physically contigu-
ous 4 MiB block via the SPOILER timing side-channel. On
the target machine, we find that an allocation using SPOILER
takes 41.6 seconds on average, with a false positive rate of
66%. However, the falsely identified 4 MiB memory blocks
consist of either a pair of 2 MiB blocks, a quartet of 1 MiB
blocks, or one 3 MiB block and one 1 MiB block. While tech-
nically non-contiguous, those composite blocks can still be
used in a Rowhammer attack if they are consistent with the
bank timing function, i.e., if they show the expected timing
measurements due to row buffer conflicts.

5.3 Page Injection
Evaluating the page injection technique in the SWAGE PAGE
INJECTOR, we find that the page injection is successful in
most of the cases. This is in line with findings in previ-
ous work [4, 28]. When the page injection fails, the attacker
restarts the online phase of the attack and tries again. Those
failed page injection attempts most likely happen due to noise
caused by allocations from different processes on the same
CPU. As soon as the page injection is successful, the attacker
can proceed to collect signatures from the signing server.

5.4 Reproducible Hammering Patterns
SWAGE employs BLACKSMITH [21] to find reproducible ham-
mering patterns in the HAMMERER module. BLACKSMITH
is a fuzzing-based software suite to find reproducible ham-
mering patterns. It generates non-uniform access patterns
by randomizing three domains: How often an aggressor row
is activated (frequency), the time between the start of the
hammering pattern and the first activation of an aggressor
row (phase), and how often an aggressor row is activated
back-to-back (amplitude). By using BLACKSMITH, SWAGE
can effectively bypass TRR, enabling Rowhammer attacks in
state of the art DDR4 memory modules. The hammering pat-
tern from BLACKSMITH can be imported in SWAGE, where
the pattern is just-in-time compiled to an assembly function
to maximize the hammering performance.

Table 1: Reproducibility results of BLACKSMITHFUZZ. Each
candidate pattern was tested over 10 rounds, each allowing
up to 1000 pattern repetitions or terminating early upon the
first encountered bit flip.

Pattern Bit Flips Retries Time (s)

Avg. Max Avg. Max Avg. Max

A 1.3 2 1.4 4 1.22 3.54
B 0.0 0 1000.0 1000 901.10 901.45
C 0.0 0 1000.0 1000 883.49 885.65
D 2.1 6 8.9 26 7.93 23.13
E 1.1 2 271.6 780 236.13 678.13
F 0.2 1 863.9 1000 774.79 896.88
G 1.0 1 23.7 51 20.23 43.53
H 1.1 2 10.8 34 9.52 29.97

We evaluated BLACKSMITHFUZZ on the target machine,
summarizing the results of an eight hour fuzzing run in Ta-
ble 1. The table shows reproducibility results for eight dif-
ferent hammering patterns showing at least one bit flip in
the fuzzing run. We see from the table a varying degree of
reproducibility: While patterns B and C are not reproducible
at all, patterns A , D, and H are highly reproducible. How-
ever, pattern D usually causes bit flips in multiple locations in
DRAM. While this can be a desired property for some attack
scenarios, the rogue flips potentially lead to system instability.
Therefore, for the SLasH-DSA attack, we chose pattern G due
to its high reproducibility and controlled bit flipping behavior.

5.5 Reproducibility of Hammering Patterns
With Block Splitting

As discussed in Section 4.3, SWAGE needs to adapt a ham-
mering pattern found with BLACKSMITHFUZZ for use with
distributed memory blocks. Block splitting allows the attacker
to split the aggressor mapping of an access pattern into smaller
memory blocks eliminating the need for vast amounts of phys-
ically contiguous memory. For the splitting process, the 1 GiB
huge page of physically contiguous memory used by BLACK-
SMITHFUZZ is divided into 4 MiB chunks and corresponding
4 MiB memory regions are allocated – using SPOILER in this
case – on the target system. This process preserves the lo-
cal properties of the patterns withing each 4 MiB chunks but
destroys the global pattern, as the individual 4 MiB blocks
are (w.h.p.) not adjacent to each other in physical memory.
However, as gathering a large amount of 4 MiB blocks using
the SPOILER approach is time-consuming, we also limit the
size of the patterns that the fuzzer is allowed to generate. For
the pattern G that we selected in the preceding subsection, we
require a total of ten 4 MiB chunks, each containing a subset
of the aggressors. The reproducibility experiment confirms
that the pattern remains effective even when applied to these
smaller memory blocks.
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5.6 Combined SWAGE Validation

In a last offline reproducibility experiment, the attacker deallo-
cates the target page before initiating the hammering process,
and then allocates it in a dummy process. This dummy process
reserves a large stack-based array, fills it with a predetermined
value, and then reads the array to verify whether the contents
of the target page match the expected value before rewriting
the array. This approach mimics the online phase of the at-
tack, where a victim process is anticipated to interact with the
target page. The results of this assessment demonstrate that
the pattern maintains the reproducibility outlined in Table 1,
underscoring its resilience to page walks, page table flushes,
and other memory management operations carried out by the
operating system. With that, SWAGE has successfully deter-
mined a reproducible access pattern and aggressor mapping
that can then be used to induce bit flips in the target page.

6 SLasH-DSA Attack

We now present the SLasH-DSA attack, a novel end-to-end
Rowhammer attack against SLH-DSA. We take previous work
by Genêt [14] as a starting point for our discussion and refer to
their work for further insights into complexity considerations
not covered in this work.

Our work extends Genêt’s attack in several key aspects:
While Genêt demonstrated the tree grafting attack using
hardware-based clock glitching on embedded systems, we
show for the first time that the attack is feasible with software-
only Rowhammer on commodity hardware. In his practi-
cal experiments, Genêt targeted the SHAKE-256s parame-
ter set in a modified SPHINCS+ reference implementation,
blindly injecting clock glitches while computing XMSS trees
and WOTS+ signatures. In contrast, we target all parameter
sets in OpenSSL’s implementation of the now-standardized
SLH-DSA, specifically attacking the lnode buffer in the
xmss_node function during XMSS tree computation (Sec-
tion 6.1). This allows us to exploit the extended lifetime of
lnode on the stack, providing larger temporal windows for
Rowhammer-induced bit flips. Beyond the attack vector and
target, we introduce a novel exact complexity analysis for
concrete compromised WOTS+ instances, enabling optimal
candidate selection, whereas Genêt analyzed the average case
complexity for uniformly distributed faults.

We first describe the fault analysis of the OpenSSL SLH-
DSA implementation, then continue with the signature gen-
eration phase, where we leverage the SWAGE framework to
carry out the attack, and finally describe the post-processing
phase with the tree grafting attack.

Algorithm 1: xmss_node(sk, i,z,pk,ADRS) [32]
Input: Secret seed sk= SK.seed, target node index i,

target node height z, public seed pk, address
ADRS

Output: n-byte root node
1 if z = 0 then
2 ADRS.setTypeAndClear(WOTS_HASH)
3 ADRS.setKeyPairAddress(i)
4 node← wots_pkGen(sk,pk,ADRS)

5 else
6 lnode← xmss_node(sk,2i,z−1,pk,ADRS)
7 rnode← xmss_node(sk,2i+1,z−1,pk,ADRS)
8 ADRS.setTypeAndClear(TREE)
9 ADRS.setTreeHeight(z)

10 ADRS.setTreeIndex(i)
11 node← H(pk,ADRS, l∥r)
12 return node

6.1 Fault Analysis of the OpenSSL SLH-DSA
Implementation

In the hypertree phase of the SLH-DSA signature generation,
xmss_node (Algorithm 1) is called repeatedly to compute the
root nodes of the Merkle trees identified by addresses ADRS,
a public seed pk, and a secret sk. In OpenSSL, xmss_node is
implemented in file crypto/slh_dsa/slh_xmss.c. It takes
as input the secret and public seed, the start index, the target
height, and the ADRS of the current tree. The function com-
putes the root node of the Merkle tree bottom up, starting at
the left-most WOTS+ node and working its way up to the root,
closely matching the recursive depth-first search algorithm
from the standard. The function recursively calls itself with
the subtree corresponding to the current node’s children until
the bottom of the tree is reached. Once at the bottom, the two
leftmost WOTS+ public keys are computed from the secret
seed, and the resulting public keys are stored in lnode and
rnode. After returning control flow to the parent, the siblings
in lnode and rnode are concatenated, hashed, and passed to
the grandparent. This procedure is repeated until the top of
the tree, where the root node acts as the scheme’s public key.

We analyze the implementation of xmss_node in OpenSSL
to find suitable memory regions for our Rowhammer attack.
Specifically, we are interested in high spatial suitability, i.e.,
the buffers in question are large enough to provide flexibility
in the exact bit to be flipped, and high temporal suitability,
i.e., the memory location provides a large enough temporal
window in which the bit flip is able to occur. For spatial suit-
ability, we observe that lnode holds the n-byte-output of hash
function H. When computing the topmost lnode in a tree, the
algorithm descends into h′− 1 levels, each maintaining its
own lnode. In total, this makes a memory region of n ·(h′−1)
bytes. Note that the spatial suitability increases with higher
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Figure 6: Access patterns for lnode in the ossl_slh_xmss_node function in the OpenSSL SLH-DSA implementation. The
figure shows all accesses to the lnode buffers across all tree levels during generation of an XMSS public key with the SHA2-256s
parameter set. Write accesses are shown in red , read accesses in blue .

security levels, as n is 32 bytes for security category five, but
only 16 bytes for security category one.

For the temporal suitability of lnode, we assume the sign-
ing party currently executes xmss_node to compute the public
key pkX of an XMSS tree and just compute lnode in line 6
at the topmost layer of the tree. From the pseudocode, we
see that the left subtree of the current node is processed be-
fore the right one, similar to a depth-first search. Meanwhile,
the topmost lnode remains on the stack for a significant por-
tion algorithm’s runtime, which makes it a prime target for a
Rowhammer attack. We see that the temporal suitability de-
creases at lower levels in the XMSS tree. Therefore, the larger
the size of the XMSS tree, the lower the temporal precision
of inducing the bit flip needs to be. This makes the “fast” vari-
ants of SLH-DSA less temporally suitable. In an attack, this
issue can be tackled by applying performance degradation
techniques discussed in Section 6.2.

Figure 6 shows the results of an experimental verification
of this observation, showing the access patterns of lnode
while computing an XMSS tree in an instrumented build of
OpenSSL. After a warm-up phase for the recursive calls to
saturate the layers of the tree, the topmost page offsets in
the figure correspond to the accesses to lnode in the top
layer, and lower page offsets are accesses in lower layers.
We observe that lower offsets in the array are written to and
read from frequently, the higher offsets are accessed only few
times per layer. We conclude that lnode is a both spatially
and temporally suitable target for a Rowhammer attack.

The information gathered in the fault analysis of
OpenSSL’s SLH-DSA implementation guides the implemen-
tation of the SLasH-DSA orchestrator module in SWAGE. This
module incorporates attack-specific code and framework con-
figuration for SLasH-DSA, while allowing to reuse SWAGE’s
core components described in Section 4.

6.2 Performance Degradation & Signature
Collection

After a fault analysis of OpenSSL, the attacker starts the online
phase of the attack, where they apply memory massaging
techniques to inject a target page into the victim process. They
then hammer the target page while continuously collecting
signatures from the signing server until a timeout is reached.

Performance Degradation. If available, OpenSSL utilizes
hardware acceleration and vector instructions when signing
messages with SLH-DSA. This increase in performance is
most notable for the lower security levels of SHA-2 and fast
variants of SLH-DSA. To still allow Rowhammer-induced
bit flips against these variants, the signing server is slowed
down using a performance degradation attack, artificially
slowing down the execution of a target program, a technique
also employed by related work [1, 4]. In SLasH-DSA, the
attacker occupies the victim’s core by using the stress tool,
which spawns a parameter-dependent number of CPU inten-
sive worker threads. Depending on the parameter set, they
use as little as 15 workers for the “small” variants of SLH-
DSA and 63 workers for the “fast” variants. In scenarios
where this amount of additional CPU load is unacceptable,
performance degradation attacks like HYPERDEGRADE [3]
or CONTROLLED PREEMPTION [45] pose viable alternatives.

Collecting Signatures. The attacker now collects signa-
tures from the signing server while concurrently hammering
the target memory region. Due to the performance degrada-
tion attack, signing times are significantly prolonged. In our
evaluation, depending on the parameter set, signature collec-
tion rates range from approximately 95 to 1917 signatures
per hour. Given the spatial locality of Rowhammer-induced
bit flips within DRAM rows, the attacker seeks corrupted sig-
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natures where faults affect the same WOTS+ instance across
multiple signature attempts, as these enable the tree grafting
attack described below. The SWAGE framework orchestrates
this process, coordinating the Hammerer module’s memory
access patterns with signature collection until the configured
timeout is reached.

After collecting signatures from the victim process, the
attacker performs the grafting tree attack in an offline post-
processing phase. In that phase, the attacker searches for
XMSS trees matching the compromised WOTS+ instances
(cf. Section 2.3) they collected from the victim (see Figure 3).
The methodology for post-processing described below was
first introduced by Castelnovi et al. [9].

6.3 Identifying Secret WOTS+ Values
In this step, the attacker identifies WOTS+ secret values from
the collected signatures. First, the WOTS+ signatures (Fig-
ure 1) are extracted from the collected signatures and grouped
by ADRS. The attacker then identifies the signatures for
which the corresponding addresses map to the same WOTS+

instance. Subsequently, they calculate the exposed WOTS+

secret values for each ADRS. Let (σW , σ̂W ) be two distinct
WOTS+ signatures for the same WOTS+ instance at ADRS
with target layer l∗, and let mi be the message chunk corre-
sponding to the message signed by σW in chain i. The attacker
identifies WOTS+ secret values in σ̂W = (σ̂(0), . . . , σ̂(ℓ−1)) us-
ing the exhaustive search described by Castelnovi et al. [9]:

1. For each σ̂(i) ∈ σ̂: find 1≤ k < mi such that

chain
(

σ̂
(i),k,w−1− k,pk,ADRS

)
= pi.

2. If such k exists, then σ̂(i) exposes the WOTS+ secret
values k, . . . ,mi−1 of chain i. If no k leads to a match,
the WOTS+ signature is discarded.

Complexity: Identifying secret WOTS+ values only yields a
negligible computational cost, ranging from 28.04 to 212.98

hashes, depending on the parameter set.

6.4 Tree Grafting
After identifying the WOTS+ secret values, the attacker per-
forms the grafting tree attack. In this step, the attacker tries
to find an XMSS public key that can be signed using the tar-
geted WOTS+ instance. This involves an exhaustive search
for a secret ˆSK.seed that produces an XMSS public key p̂kX .
However, only a limited number of XMSS trees can be signed,
as the attacker can only sign messages that are compatible
with the exposed chain secrets. Let (θ̂0, θ̂1, . . . , θ̂ℓ−1) be the
exposed secret elements of the targeted WOTS+ instance, cor-
responding to message chunks (m̂0, m̂1, . . . , m̂ℓ−1). Following
the approach by Castelnovi et al. [9], the algorithm to find a
suitable XMSS tree works as follows:

1. Create a new XMSS tree with public key p̃kX from a
secret ˆSK.seed drawn uniformly at random.

2. Split p̃kX and its WOTS+ checksum into chunks
(r̃0, . . . , r̃ℓ−1) of size w bits.

3. If r̃i ≥ m̂i for all 0 ≤ i < ℓ, return the grafted ˆSK.seed.
Repeat from step 1 otherwise.

Complexity: The hash complexity of tree grafting may impose
significant computational cost, scaling with the number of
signatures for a compromised WOTS+ instance and the num-
ber of compromised WOTS+ secret values. In our evaluation
(Section 8), the observed grafting complexity ranges from
227.98 hashes (SHAKE-128f deterministic) to 2130.46 hashes
(SHAKE-128s deterministic) for parameter sets where faults
were collected, with successful forgeries achieved for com-
plexities up to 232.95 (SHA2-128s randomized). The total at-
tack complexity, combining grafting and seeking, determines
the practical feasibility of the forgery. In Section 7, we de-
scribe how to determine the actual complexity of attacking
specific faulted instances.

6.5 Path Seeking
The randomization value R, together with the message m to
be signed, determines the path taken through the hypertree.
This randomization value is determined by the signing party,
and can therefore be chosen by the attacker. For the universal
forgery, they have to find a value R′ such that the signing vis-
its the compromised WOTS+ instance and the grafted XMSS
tree. Finding such a value R′ boils down to searching an n
byte number such that the h− h′l∗ most significant bits are
equal to the index of the grafted subtree.
Complexity: Path seeking yields cost for each forged signa-
ture. Each attempt at finding a valid R′ requires a single hash
function call, and the attacker on average needs 2h−h′l∗ hash
function calls to find a suitable R′.

7 An Exact Solution For Grafting Complexity

Despite previous analysis on the theoretical grafting complex-
ity for a given SLH-DSA instance, the literature currently
lacks a method for estimating the grafting complexity for a
concrete compromised WOTS+ key pair after the collection
of faulty signatures. While Genêt provides a sound estimate
for the average grafting complexity for uniformly distributed
WOTS+ secrets [14], in practice, an attacker has to choose
from a concrete set of WOTS+ instances to graft a tree for.
However, for concrete WOTS+ instances, there can be a wide
variance in grafting complexity even for the same number of
observed collisions. Our analysis closes this gap, allowing an
attacker not only to estimate the runtime for the offline graft-
ing phase, but also to rank compromised WOTS+ key pairs
based on the expected forgery runtime. We introduce a novel
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combinatorial technique to precisely determine the grafting
success probability for a given set of exposed WOTS+ secret
values, enabling attackers an improved estimation of the total
attack complexity. This approach extends Genêt’s work by
providing exact complexity analysis for concrete instances
rather than average-case estimates.

7.1 Notation
Let w ∈ Z+ be the Winternitz parameter. For a WOTS+ signa-
ture σ of a message m, we denote the message chain indices
in σ corresponding to message block i ∈ {0,1, . . . , ℓ1− 1}
by mi ∈ {0, . . . ,w − 1}. Similarly, denote the checksum
chain indices corresponding to the checksum c of m by
ci ∈ {0, . . . ,w− 1} for i ∈ {0, . . . , ℓ2− 1}. We denote a full
WOTS+ chain by θ = (m0,m1, . . . ,mℓ1−1,c0,c1, . . . ,cℓ2−1).

For chain i, we call the preimages 0 ≤ θ̃i < θi of θi the
WOTS+ secret values. If the attacker obtains two or more
WOTS+ signatures for distinct messages such that at least one
secret value is exposed, we call this instance compromised.

7.2 A Combinatorial Solution For Grafting
Complexity

There is a wide variance in the resulting grafting complexity
even for the same number of collisions in a WOTS+ instance.
Therefore, we now derive the expected runtime for forging
a signature using a specific key pair. To exploit a compro-
mised WOTS+ instance, the attacker combines the secret val-
ues exposed by signatures from that instance, collecting the
minimal chain secret values for each chain. They then use
the exposed chain secrets to graft and sign an XMSS tree at
the next layer. However, they have to find a tree matching the
exposed chain secrets. Since the sampled XMSS trees are dis-
tributed uniformly at random, the attacker can now compute
the probability that a random message can be signed given
the exposed chain secrets, a proxy for the post-processing
grafting complexity. As a WOTS+ signature is only valid if
message and checksum match, they have to find the number
of valid message-checksum combinations. Enumerating all
messages and filtering for the ones reachable with the avail-
able checksums is infeasible, because there are wℓ1 possible
messages, ranging from 2128 to 2256 depending on the param-
eter set. However, since ℓ2 = 3 for all parameter sets, they can
enumerate the reachable checksums and compute the number
of valid messages for those checksums. We first formulate this
challenge as a combinatorial problem and then introduce an
implementation based on dynamic programming. For that, we
denote the integer representation of a checksum c regarding a
base w by to_int(c,w) = ∑

ℓ2
i=0 ci ·wi.

Chain capacities: We define the per-component capacities
of message chain i = 0, . . . , ℓ1−1 as ki = w−1−mi. These
capacities describe the number of times each message chain
can be iterated until the chain’s end at step w−1 is reached.

Enumeration of checksums: Let T be the set of check-
sums computable by continuing checksum chains until the
chain’s end or the maximum checksum ℓ1 · (w−1) is reached.
More formally, T ⊆ {0,1, . . . ,w−1}ℓ2 consist of the tuples
τ = (τ0, . . . ,τℓ2−1) satisfying for all 0≤ i≤ ℓ2−1:

ci ≤ τi < w ∧ to_int(τ,w)≤ ℓ1 · (w−1).

Counting signable compositions: For each valid tuple
τ ∈ T , define the capacity to be distributed across chains
as κ(τ) = to_int(c,w)− to_int(τ,w). We now want to deter-
mine the number of ways the capacity can be distributed
under the constraints K = {ki | 0 ≤ i < ℓ1}, i.e., the num-
ber of compositions x = (x0,x1, . . . ,xℓ1) satisfying ∑

ℓ1
i=0 xi =

κ(τ,K ) such that 0 ≤ xi ≤ ki. Generating solutions to this
system is known as the second-order restricted weak integer
composition [34] problem and, in general, there are exponen-
tially many solutions to this system. However, we are only
interested in the number of compositions N(κ(τ,K )) satisfy-
ing this system, which can be computed in time O(τ · ℓ1) and
memory O(τ) by the dynamic programming based algorithm
shown in Algorithm 2.

Putting it all together: Using N(κ(τ,K )) for all τ ∈ T ,
we can compute the probability that a random XMSS tree
can be signed with a given compromised WOTS+ instance
by taking the fraction of signable messages over the num-
ber of all messages: P(Signable) = ∑τ∈T N(κ(τ,K ))

wℓ1
. Modeling

tree grafting as a Bernoulli process with success probability
P(Signable), we can, on average, expect the tree grafting to
succeed after C(Grafting) = 1

P(Signable) attempts. Multiplying
C(Grafting) with the number of hash operations required to
compute an XMSS tree yields the grafting hash complexity.

8 Evaluation of SLasH-DSA

In this section, we evaluate the practical feasibility and effec-
tiveness of our Rowhammer-based attack against SLH-DSA
signature schemes. We leverage the SWAGE framework in-
troduced in Section 4 to orchestrate the end-to-end attack:
based on our fault analysis in Section 6.1, we implemented an
SLH-DSA-specific ORCHESTRATOR module for SWAGE, and
use SWAGE’s core components to perform the attack: SWAGE
handles DRAM address reverse-engineering, hammering pat-
tern execution, page injection to co-locate victim data with
aggressor rows, and signature collection during the online
phase. Taking advantage of SWAGE’s modular architecture,
this allows us to focus on the target-specific parts of the at-
tack, relying on established attack primitives implemented
in the SWAGE core. We demonstrate the ability to success-
fully compromise the deterministic and randomized variants
of SLH-DSA across different parameter sets. Our evaluation
quantifies the computational complexity of the grafting and
seeking phases, and analyzes the trade-offs between different
attack strategies. The results show that our attack can achieve
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practical signature forgery within reasonable time bounds for
some SLH-DSA parameter configurations, taking only a few
minutes to an hour on commodity hardware, while showing
theoretical attack complexities for most parameter sets.

8.1 Experimental Setup

We conducted our experiments on a system with an Intel i5-
6400 CPU and a single G.Skill AEGIS 16 GB DDR4-2133
DIMM, running Ubuntu 20.04.6 with Linux kernel version
6.8.12-generic with default settings. We evaluated the SLH-
DSA implementation in OpenSSL version 3.5.1, released on
July 1st, 2025. The signing process was implemented via a
small signing server accepting signing requests via standard
input and returning signatures to standard output. The sign-
ing server is configurable with all standardized SLH-DSA
parameter sets with both random and deterministic signing.
Both the signing server and OpenSSL were built with gcc
version 11.4.0 with all -O3 optimizations enabled. The post-
processing is performed on an Intel Xeon Gold 5415+ with
128 GB RAM, running Ubuntu 20.04.6 with Linux kernel
version 5.11.0-generic with default settings.

While the experimental setup we chose demonstrates the
feasibility of the attack, newer hardware incorporates novel
Rowhammer defenses, and newer software versions may in-
clude additional countermeasures. Future work should inves-
tigate the attack’s effectiveness on more recent and varying
system configurations.

8.2 Attack Against Deterministic SLH-DSA

At the start of the signing procedure, the SLH-DSA signing
algorithm determines the FORS instances for signing the mes-
sage and the path taken through the hypertree. The FORS
instances and path through the hypertree depend on the mes-
sage to be signed, the PK.seed and PK.root, and an optional
random value R. The randomization of the signing process is
optional, and is set to PK.seed when deterministic mode is
selected. We start the experiments with an attack against the
deterministic variant of SLH-DSA. Table 2a shows the attack
complexity after one hour of hammering. The table shows the
number of signatures collected and the number of observed
faults (i.e., signatures not matching the expected output from
the signing server). For the most exposed WOTS+ instance, it
reports the layer this instance was encountered, the grafting
and seeking complexities in number of hashes and, if appli-
cable, the post-processing time for a successful forgery. Our
results highlight the increased susceptibility of deterministic
SLH-DSA, as deterministic signing maximizes the number
of possible collisions due to the reuse of FORS, XMSS, and
WOTS+ instances throughout the signing procedure.

8.3 Attack Against Randomized SLH-DSA

In contrast to the deterministic variants, the randomized SLH-
DSA signature scheme incorporates an additional random
value R, which further diversifies the signing process even for
signing the same message repeatedly. This randomization sig-
nificantly complicates the attack methodology, as it disrupts
the reuse of specific cryptographic instances that we exploit
in the deterministic mode. In this subsection, we outline our
approach to adapting collision-based strategies to randomized
signing. We analyze the impact of the extra randomness on
both the grafting and path seeking phases, and discuss the
increased computational challenges introduced by randomiza-
tion. Our experiments provide insights into the effectiveness
and limitations of the attack under these conditions.

For deterministic signing, a fixed message always results in
the same path through the hypertree, whereas for randomized
signing, the path is determined using R. Due to the random-
ized path, it is unlikely that XMSS trees at low hypertree levels
will be reused, and we cannot expect to find colliding WOTS+

instances for our attack on these levels. This is especially true
for the “small” parameter sets of the scheme: For example, in
the 256s parameter set with XMSS tree height h′= 8, there are
256 WOTS+ instances in the topmost layer 16, and 25615−l at
layer 0 < l < 16. The “fast” variants, however, stand out with
small XMSS trees and more hypertree layers. For example,
the 192f parameter set has XMSS tree height h′ = 3, result-
ing in 8 WOTS+ instances in the topmost layer 21, and 820−l

at layer 0 < l < 21. This makes WOTS+ collisions on layers
other than the topmost layer feasible, increasing the attack sur-
face of our attack against randomized signing. Table 2b shows
the attack cost for a one-shot forgery attack, i.e., forging a
valid signature for one attacker-chosen message, after eight
hours of hammering the randomized variants of SLH-DSA
for all parameter sets. While the number of faulted signatures
serve as a first proxy for the success of an attack, the fault
characteristic is important for the attack: for example, faulting
the hash function’s internal constants will not produce useful
faults for the attacker. We presume that the increased fault
rate for some parameter sets, such as SHAKE-192s, where
we observe a significant number of faulted signatures not cor-
responding to improved attack complexities, are due to this
effect. We hypothesize however, that longer hammering time
in general improves attack capabilities.

The experiments against both deterministic and random-
ized signing were conducted while applying performance
degradation as described in Section 6.2. The experiments
show that the end-to-end attack is feasible after only a few
hours of hammering for some parameter sets, resulting in a
post-processing time for both deterministic and randomized
signing of only a few minutes. The grafting step complexity is
calculated by applying our novel, exact solution method from
Section 7. Weighing grafting vs. path seeking is a promising
optimization for multi-shot signing, as the cost for path seek-
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Table 2: Best total attack complexity for one-shot forgery after (a) one hour of hammering against deterministic signing and
(b) eight hours of hammering against randomized signing with all parameter sets. We consider the attack complexity to be the
sum of grafting and seeking for a one-shot forgery attack, i.e., signing one attacker-selected message. Grafting and Seeking
columns show hash complexity (cf. Section 7), time is in seconds. Empty cells (–) indicate parameter sets where insufficient
faulted signatures were collected to carry out an attack within a reasonable amount of time.

(a)

Sign
atu

res

Fau
lte

d

Lay
er

Graf
tin

g

See
kin

g

Tim
e (s)

SH
A

2

128s 187 1 3 293.37 236 –
128f 1917 1 6 230.66 248 –

192s 105 2 5 252.32 218 –
192f 567 7 12 242.09 230 –

256s 115 3 6 253.85 216 –
256f 275 3 4 250.18 252 –

SH
A

K
E

128s 163 2 4 2130.46 227 –
128f 1683 3 17 227.98 215 151

192s 95 1 – – – –
192f 517 10 21 236.56 23 –

256s 105 5 3 253.20 240 –
256f 253 10 15 244.53 28 –

(b)

Sign
atu

res

Fau
lte

d

Lay
er

Graf
tin

g

See
kin

g

Tim
e (s)

SH
A

2

128s 1503 37 6 232.95 29 3781
128f 7659 1 – – – –

192s 843 50 6 241.91 29 –
192f 4617 6 19 240.84 29 –

256s 949 102 7 251.59 28 –
256f 2279 26 15 252.65 28 –

SH
A

K
E

128s 1323 3 – – – –
128f 13479 33 18 285.85 212 –

192s 761 360 6 236.42 29 –
192f 4137 209 21 231.29 23 1417

256s 869 26 7 252.77 28 –
256f 2035 34 15 252.31 28 –

ing must be spent on each message, while grafting is only
needed once.

For unsuccessful forgeries in Tables 2a and 2b, we iden-
tify two bottlenecks: for the SHAKE-192s (deterministic),
SHA2-128f, and SHAKE-128s (randomized) parameter sets,
insufficient faulted signatures were collected during the ham-
mering campaigns, resulting in no compromised WOTS+

instances. Besides, for parameter sets with compromised
WOTS+ instances but high grafting complexities, the offline
post-processing phase is computationally infeasible on com-
modity hardware (e.g., 285.85 hashes for SHAKE-128f ran-
domized). However, using a more vulnerable DIMM with
higher bit flip rates could improve fault collection during the
online phase, potentially making attacks feasible for addi-
tional parameter sets. This is in contrast to Genêt’s hardware-
based approach [14], where glitch injection enables attacks in
all five trials of his practical attack against the SHAKE-256s
parameter set with 1024 collected signatures per trial, the
attack being restricted solely by the offline post-processing.

9 Related Work

In this section, we discuss prior work relevant to our study,
including grafting tree attacks and fault analysis techniques,
Rowhammer-based attacks that target PQC schemes, and ex-
isting countermeasures against Rowhammer vulnerabilities.

9.1 Grafting Attacks and Countermeasures

Castelnovi et al. [9] were the first to present a theoretical
analysis of the grafting tree attack including computational
feasibility. Genêt et al. implemented the grafting tree attack
against SPHINCS [15]. Genêt later presented a theoretical
analysis of the grafting tree attack against SPHINCS+ along
with a practical attack implementation [14]. The fault injec-
tion method in those works is a hardware-supported clock
glitching attack focused on embedded devices.

Additionally, Genêt [14] examined the layer caching and
branch caching countermeasures against grafting tree attacks.
The layer caching countermeasure involves pre-computing up-
per layers of the SPHINCS+ hypertree, storing them alongside
the public key. This reduces the number of attackable hash
function calls, forcing the attacker to find collisions in the
lower layers, decreasing collision probability and increasing
path seeking complexity for successful faults. This counter-
measure shows varying degrees of effectiveness, depending
on the number of cached layers. With the branch caching
countermeasure, on the other hand, the signing party stores
all encountered WOTS+ signatures and public keys in a fixed-
size cache. However, it was shown that this countermeasure
is ineffective in protecting SLH-DSA, as cache misses and
therefore recomputations of WOTS+ instances are inevitable
with reasonably sized caches. To summarize, the best current
solution to protect the scheme is redundancy, where (parts of)
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the signature is verified by duplicate computation [5, 9].

9.2 Rowhammer Attacks against Post-
Quantum Schemes

Rowhammer has also shown effective as a fault injection
method against other post-quantum schemes. In PQHam-
mer [4], Amer et al. describe end-to-end key recovery attacks
based on Rowhammer against the post-quantum key encap-
sulation mechanisms (KEMs) BIKE and CRYSTALS-Kyber
(ML-KEM), and against the lattice-based signature scheme
CRYSTALS-Dilithium (ML-DSA). In Crowhammer [18],
Haidar et al. show how to attack the post-quantum signature
scheme Falcon to perform a Rowhammer-based key recovery
attack. This line of research highlights the need to include
Rowhammer attacks against post-quantum cryptography in
the threat models. A starting point for this are tools like Ham-
merTime [39], enabling profiling and simulation of Rowham-
mer attacks. While the profiling results indicate how many
hammering experiments are required to flip a bit in a given
offset range within a page, HammerTime does not cover all
necessary steps for an end-to-end Rowhammer attack.

9.3 Fault Analysis
Orthogonal to exploiting memory fault vulnerabilities, an-
other line of work analyzes the vulnerability of schemes to
fault attacks. Achilles [29] systematically analyzes signa-
ture schemes by separating the fault model from the algo-
rithm under analysis: A generalized signature scheme utilizes
public and secret parameters combined with signing oracles
that generate valid and faulty signatures. A fault model then
specifies where to inject the faults, and in a post-processing,
the secret key is recovered. The authors showcase the effi-
cacy of Achilles in the key recovery domain with six differ-
ent signature schemes including the post-quantum scheme
CRYSTALS-Dilithium (ML-DSA). However, transitioning
from key recovery to universal forgery of SLH-DSA is not
straightforward as there is no obvious reduction from their
attacker model for deriving secret values to forging valid sig-
natures. Rainbow [31] is another automated fault analysis tool
that emulates the target program with the Unicorn CPU emula-
tor [40]. Rainbow allows to specify fault injection parameters
for automated fault injection against a target program.

9.4 Rowhammer Countermeasures
There has been a variety of Rowhammer countermeasures
implemented by manufacturers and proposed in scientific
work. TRR, a DDR4 vendor-specific mechanism, tracks mem-
ory accesses and issues refresh commands on unusual access
patterns, preventing simple Rowhammer attacks by preemp-
tively restoring charge before bit flips can be induced. How-
ever, TRR is ineffective against advanced hammering pat-

terns [13, 21]. Hardware-supported Error-Correcting Codes
(ECC) can detect and correct bit flips [16, 38], but increases
DRAM cost and may be ineffective against certain Rowham-
mer attacks [10, 24] or introduce new attack vectors such as
timing-based attack [28]. Even DDR5, while introducing new
countermeasures [8, 23], has been found to be susceptible to
Rowhammer attacks [20, 22].

OS-level mitigations like guard rows around sensitive mem-
ory pages [27, 41] prevent some Rowhammer attacks but
introduce high memory and performance costs. They can fur-
thermore be bypassed by attacks using non-adjacent aggressor
rows [21, 26]. However, all of these countermeasures have
individual limitations, are not universally applicable, or are
not effective against all Rowhammer attacks.

10 Future Work

In this paper, we demonstrated the feasibility of a Rowham-
mer attack against SLH-DSA as an exemplary post-quantum
signature scheme. We implement the SWAGE framework, en-
abling easy implementation of practical Rowhammer attacks.
One remaining aspect requiring substantial manual effort with
SWAGE is analyzing the binary and scheme to find memory
locations susceptible to Rowhammer fault attacks. This could
be improved by integrating SWAGE more closely with tools
like Achilles or Rainbow (c.f. Section 9).

As shown in Table 2a and Table 2b, for some parameter
sets, tree grafting and path seeking require significant CPU
resources assuming a limited amount of hammering. Since
both tree grafting and path seeking are heavily dependent
on the hashing performance, a substantial speedup is to be
expected with GPU acceleration. In 2025, Wang et al. pre-
sented CUSPX [43], a GPU-accelerated implementation of
SPHINCS+. Preliminary benchmarks using their hash func-
tion implementations show a substantial increase in hash
performance, achieving 237.2 SHA-256 operations per second
on an NVIDIA RTX 4090. This marks a 214-fold increase
compared to our evaluation system. A GPU-accelerated imple-
mentation of the grafting and path seeking algorithms should
speed up the attack significantly, potentially allowing to break
some of the remaining parameters sets.

Moreover, for the attack presented in this paper, we assume
that the attacker is core co-located with the victim for the
page injection. In Rubicon [7], Bölcskei et al. demonstrate
that page injection attacks also work across CPUs, widening
the threat model to be considered for Rowhammer attacks and
potentially making a wider range of systems vulnerable.

11 Conclusion

We presented SLasH-DSA, an end-to-end Rowhammer at-
tack against SLH-DSA. We demonstrated this attack against
OpenSSL to be feasible and effective in practice, allowing an
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attacker to conduct a universal forgery attack against all NIST
security levels of SLH-DSA by flipping bits in the signature
generation process. In addition, we provided a novel complex-
ity analysis for concrete faulted signatures that allows steering
the post processing along the path of lowest complexity, speed-
ing up the attack. This is, to the best of our knowledge, the
first practical demonstration of a Rowhammer attack against
SLH-DSA on a real-world system. To conduct the attack, we
introduced SWAGE, a comprehensive open-source framework
for performing Rowhammer attacks on real-world systems.
SWAGE provides a modular interface for Rowhammer attacks,
allowing users to focus on the attack logic rather than the
underlying hardware and operating system details. To our
knowledge, SWAGE is the first fully open-source end-to-end
framework for Rowhammer attacks, providing a complete and
extensible solution for attacks on real-world systems.
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13 Appendix

13.1 Number of Weak Compositions
The following DP-based algorithm computes the number of
weak compositions ∑

ℓ1−1
i=0 xi for a target sum τ respecting

upper bounds ki for 0≤ i≤ kℓ1−1:

Algorithm 2: WEAK-COMP(τ, k0, . . . ,kℓ1−1)

Input: Target sum τ, upper bounds k0, . . . ,kℓ1−1
Output: Number of weak compositions

x = (x0, . . . ,xℓ1−1) of τ respecting 0≤ xi ≤ ki

1 Initialize
2 for t← 0 to τ do
3 d p[t]← 0
4 d p[0]← 1 // one way to compose 0

5 for i← 0 to ℓ1−1 do
6 prefix← 0
7 for t← 0 to τ do
8 prefix← prefix+dp[t]
9 if t > ki then prefix← prefix−dp[t− (ki +1)]

10 new[t]← prefix
11 for t← 0 to τ do
12 dp[t]← new[t]
13 return d p[τ]
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