
WiP: Flush-based Cache Attacks on Modern / Multi-Socket x86 Systems

Guillaume Didier
Universität des Saarlandes, Germany;

Formerly: DGA; Univ. Rennes, Inria, IRISA

Thomas Rokicki
CentraleSupélec, Inria, CNRS,

IRISA, Université de Rennes; France

Augustin Lucas
Département d’Informatique, ENS de Lyon;

Univ. Rennes, Inria, IRISA; France

Cache-based side and covert channels are among the oldest
and most widely exploited microarchitectural leakage prim-
itives [3, 4]. They remain essential to both offensive and
defensive research: most transient execution attacks rely on
such channels to transfer data from the transient to the archi-
tectural domains [5]. They are also used to reverse engineer
undocumented aspects of modern microarchitectures [1].

On x86, the clflush instruction provides an unprivileged
way to evict cache lines from all levels of the cache hierarchy,
enabling fine-grained observation of memory access behavior
within (read-only) memory shared by the attacker and victim.
It forms the basis of the Flush+Reload attack [6], which re-
mains a fundamental primitive in cache-based side-channel
attacks. Gruss et al. [2] also observed that clflush latency
depends on the cache line’s coherence state on Intel CPUs,
leading to the Flush+Flush attack.

Modern CPUs are increasingly complex, with several levels
of caches, with sometimes per-core slices in the last-level
cache, complex on-chip and off-chip interconnect, and, in
multi-socket systems, multiple Numa nodes. The latency
of memory accesses thus depends strongly on the relative
placement of cores, cache slices, and Numa nodes within
the system topology, as illustrated in Figure 1. For example,
reading data from memory (cache miss) located in a remote
Numa node incurs a higher latency (600 cycles on 2× Sapphire
Rapids system) than reading from the local node’s memory
(only 400). While this behavior is intuitive, its impact on
the accuracy, reliability, and timing characteristics of cache-
based side-channel attacks has yet to be quantified. This gap
motivates our study and leads to our main research question:
To what extent does the growing complexity of x86 sys-

tems affect the effectiveness of flush-based cache attacks?
Our study seeks to determine how topology affects the

effectiveness of Flush+Flush and Flush+Reload attacks, and
how attacker awareness of these factors improves accuracy and
bandwidth. We perform a detailed analysis of memory latency
across all relevant topological dimensions, including attacker
and victim core placement, cache slice, and Numa node, to
quantify their respective impacts on timing variability and er-

ror rates. To further quantify the gains of topology awareness,
we evaluate the bandwidth and error rates of different topo-
logical configurations in a covert-channel setting, assessing
the speed and robustness of these primitives in practice. To
ensure that our observations generalize across platforms, we
conduct a large-scale study across 36 Intel and AMD systems,
including client, server, and multi-socket architectures.

We find that topology awareness, in particular Numa aware-
ness, can reduce error rates of attacks by up to an order of
magnitude compared to topology-unaware methods. For in-
stance, on esterel41, a two-socket Intel Sapphire Rapids
machine, topology-unaware Flush+Flush has an average error
rate of 27.55%, while the topology-aware average is 1.53%.
If the attacker is not merely aware, but is allowed to select the
best configuration, then the error rate drops below 0.01%.

We also present Load/Flush+Reload, a more accurate vari-
ant of Flush+Reload, which provides a higher bandwidth, how-
ever limited to a covert-channel scenario. On a single-socket
Zen 5 machine, it achieves a true capacity of 4.98 Mbit/s, a
2× improvement over Flush+Flush and Flush+Reload, which
only achieve, respectively, 1.95 Mbit/s and 2.27 Mbit/s.
— We demonstrate that topology is a major contributor to

load and clflush timing, with Numa being the most
significant factor in multi-socket systems.

— We show that, on modern systems, accurate Flush+Reload
and Flush+Flush attacks are enhanced by topology aware-
ness. As illustrated in Table 1, the hit/miss classification
error rate of a Flush+Reload is reduced by 2 order of
magnitudes by taking into account NUMA-topology on a
2-socket Sapphire Rapids processor.

— We present an evaluation of the impact of various parame-
ters on cache attack performance, on 36 x86 systems.

— We show that Flush+Flush is widely applicable on x86
machines, including AMD and multi-socket systems, and
may be more accurate than Flush+Reload in many cases.

— We present a new covert-channel primitive, Load/Flush+
Reload, whose bandwidth can reach 2× that of Flush+
Reload and Flush+Flush, and far lower error rates.

1



0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

0.5
1

·107

(a) Topology-unaware histogram, weighing equally all possible configurations

0 500 1,000
0
1
2
3

·106
Location: A: 0, V: 0, M: 0

0 500 1,000
0
1
2
3

·106
Location: A: 0, V: 1, M: 0

0 500 1,000
0
1
2
3

·106
Location: A: 1, V: 0, M: 0

0 500 1,000
0
1
2
3

·106
Location: A: 1, V: 1, M: 0

0 500 1,000
0
1
2
3

·106
Location: A: 0, V: 0, M: 1

0 500 1,000
0
1
2
3

·106
Location: A: 0, V: 1, M: 1

0 500 1,000
0
1
2
3

·106
Location: A: 1, V: 0, M: 1

0 500 1,000
0
1
2
3

·106
Location: A: 1, V: 1, M: 1

(b) Numa-aware histograms, under the Numa-AVM model.

Figure 1: Flush+Reload timing histograms on esterel41, (2× Sapphire Rapids). In red, outlined, loads of an invalid line (�)
i.e., cache misses. In blue, filled, loads of a victim-exclusive line (�), i.e., cache hits.

Table 1: Summary for esterel41, (2× Sapphire Rapids).

Model F+R F+F LF+R
Topology-Unaware 27.55 34.15 < 0.01
Topology-Aware 1.53 6.57 < 0.01
Best Topology-Aware < 0.01 < 0.01 < 0.01

Acknowledgments
Multi-socket experiments presented in this paper were carried
out using the Grid’5000 testbed, supported by a scientific in-
terest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr/).

This project started at IRISA, with support from the French
DGA, and was then pursued at Saarland University. This
work has received funding from the European Research Coun-
cil under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 101020415).

We would also like to thank Stefan Gast for the measure-
ments ont the lab32 (Zen4c) machine, and Jan Reineke for
his advice and thorough feedback.

References

[1] Guillaume Didier, Clémentine Maurice, Antoine Geimer,
and Walid J. Ghandour. Characterizing Prefetchers using
CacheObserver. In SBAC-PAD, 2022.

[2] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy Cache

Attack. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2016.

[3] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In CT-
RSA, 2006.

[4] Colin Percival. Cache missing for fun and profit. In
BSDCan, 2005.

[5] Wenjie Xiong and Jakub Szefer. Survey of transient ex-
ecution attacks and their mitigations. ACM Computing
Surveys, 2021.

[6] Yuval Yarom and Katrina Falkner. Flush+Reload: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack.
In 23rd USENIX Security Symposium, 2014.

A Artifacts

Our current experimental code can be found on GitHub1. We
also provide an online supplement on Zenodo, available at
https://doi.org/10.5281/zenodo.1798784
2, which contains our current results, for all 36 machines. We
also intend to make available the experimental results files (>
10 GiB) and the rust library needed to deserialize them, in a
later version of the Zenodo upload.

1https://github.com/GuillaumeDIDIER/flush-bas
ed-cache-attacks-modern-x86

2

https://github.com/GuillaumeDIDIER/flush-based-cache-attacks-modern-x86
https://doi.org/10.5281/zenodo.17987842
https://doi.org/10.5281/zenodo.17987842
https://github.com/GuillaumeDIDIER/flush-based-cache-attacks-modern-x86
https://github.com/GuillaumeDIDIER/flush-based-cache-attacks-modern-x86

	Artifacts

