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Abstract
Traditional speculative attacks rely on training hardware
predictors, limiting practicality. We present DROW, exploit-
ing blind bypassing on Apple silicon, where loads specula-
tively bypass stores without training. This primitive circum-
vents mistraining defenses to hijack data and control flow.
DROW achieves 16.3× higher bandwidth than prior art, en-
abling practical exploits including cross-page browser leak-
age,ASLR/KASLR bypassing, and PAC circumvention.

1 Introduction

Speculative execution attacks have fundamentally altered se-
curity [3], yet most rely on a training phase to prime microar-
chitectural predictors. This dependency necessitates deep mi-
croarchitectural knowledge and complex gadget preparation.
In contrast, training-free attacks, which trigger speculation
unconditionally, significantly lower the barrier to exploitation
but remain largely explored only in control-flow contexts on
x86 [1]. This work investigates whether training-free mecha-
nisms exist for data-flow speculation in other architectures.

We identify blind bypassing on Apple M-series CPUs—a
mechanism where loads speculatively bypass older stores
without training. Based on this, we propose DROW, a training-
free Spectre-type attack. We address challenges of exploit-
ing training-free primitives, including the lack of trainabil-
ity and the difficulty of hijacking control flow. Our contri-
butions are: (1) disclosing the blind bypassing mechanism
on Apple Silicon; (2) characterizing the Spectre-BB primi-
tive, achieving 16.3× higher bandwidth than state-of-the-art
training-based attacks [2]; and (3) demonstrating real-world
attacks including leaking cross-page data in Chrome, bypass-
ing ASLR/KASLR (100% success), and compromising ARM
Pointer Authentication (PA).
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Figure 1: Bypass frequency vs. training iterations. Apple Silicon stays at 100% (Training-
free), unlike Cortex.
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Figure 2: Overview of the Spectre-BB experiment. The speculative load retrieves a stale
pointer to access secret data.

2 The Spectre-BB Primitive

Discovery of Blind Bypassing. We systematically analyzed
load speculation on ARM and Apple Silicon. Figure 1 com-
pares the bypass frequency under varying training iterations.
On ARM Cortex-A76, the predictor learns to suppress the
bypass as iterations increase (dropping to 0%). In contrast, Ap-
ple M-series CPUs maintain a ≈100% bypass rate regardless
of iterations. This confirms the mechanism is training-free
and stateless, making it immune to history-based defenses.
Primitive Construction. Figure 2 illustrates the Spectre-BB
gadget. We deliberately stall a store instruction (e.g., via de-
pendency chains). A subsequent load speculatively bypasses
this store, retrieving a stale value (attacker-controlled pointer)
from the memory hierarchy. The CPU speculatively derefer-
ences this pointer, encoding the secret into the cache before
the pipeline flushes.
Activation Conditions. Bypassing is suppressed only by di-
rect (RAW) or same-operand dependencies. Same-source
dependencies (e.g., array indexing) do not inhibit the bypass.
The speculative window is limited primarily by ROB capacity.
Coherence-Based Eviction. We use a remote-core writing
thread to induce coherence invalidations, creating a privilege-
free timing channel to extract the signal from Figure 2.
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3 Real-world Exploitation

We evaluate DROW’s severity by identifying gadgets in major
software and executing three end-to-end attacks on macOS
15.5 and Chrome v139.
Gadget Analysis & Capability. We developed a symbolic
execution scanner based on angr to detect Spectre-BB gad-
gets (stalled store followed by dependent load). We identi-
fied 40,889 unique gadgets in the macOS XNU kernel, 60
in MbedTLS, and 13 in OpenSSL. In a native PoC on M3,
Spectre-BB achieves a leakage bandwidth of 94.8 Kb/s with
99.07% accuracy, outperforming the training-based SLAP
attack (5.8 Kb/s) by 16.3×.
Case 1: Breaking Browser Sandboxes. We bypass Chrome’s
site isolation using WebAssembly (WASM). Since WASM
enforces strict runtime bounds checks, we exploit the WASM
Garbage Collection (GC) proposal to induce a Type Con-
fusion. We craft a gadget where the JIT compiler specula-
tively treats an attacker-controlled 64-bit integer as a pointer
to a structured object (e.g., ‘struct.ref‘). Under Spectre-BB,
the CPU bypasses the type check and dereferences this inte-
ger, allowing arbitrary memory reads. To exfiltrate data, we
constructed a custom high-resolution timer in WASM, distin-
guishing L1 hits/misses. As shown in Figure 3, we achieve
cross-site leakage at 21.3 bps with 94.7% accuracy.
Case 2: Breaking ASLR/KASLR. DROW serves as an oracle
to distinguish mapped pages from unmapped holes. When
Spectre-BB accesses an unmapped page, the speculative load
fails to fill the cache; accessing a mapped page leaves a trace.
• User ASLR: We scan the virtual address space to locate

the dyld shared cache, achieving 100% success in <140ms.
• KASLR: We leverage a userspace-triggerable gadget in

the XNU kernel (via ‘ioctl‘). By passing guessed addresses
to the kernel gadget, we probe the kernel map, breaking
KASLR with 100% success in ≈24s.

Case 3: Breaking Pointer Authentication (PAC). ARM
PAC signs pointers to ensure integrity. However, speculative
execution suppresses authentication faults. On M1/M2/M3,
we use Spectre-BB to speculatively execute the autia instruc-
tion. We brute-force the PAC signature (upper bits). Only a
correct guess allows the subsequent load to succeed and fill
the cache line. This side-channel allows forging valid pointers
without the key (96.4% success on M3). Insight on M4: On
the M4 chip, transient autia always speculates as successful
regardless of correctness. While this breaks our oracle for key
recovery, it implies the CPU aggressively ignores integrity
checks during speculation.

4 Discussion & Conclusion

Related Work & Mitigation. Unlike training-based attacks
like PACMAN [4] or SLAP [2], DROW exploits a training-
free mechanism, offering stability and portability. Challeng-
ing mitigation: hardware fixes degrade performance, while

Figure 3: Cross-site data leakage in Chrome using DROW. We recover a secret string
from a victim process with 94.7% accuracy.

software barriers in hot paths incur prohibitive overheads.
Conclusion. We introduce DROW, a training-free primitive on
Apple Silicon. Exploiting unconditional blind bypassing, we
compromise browser sandboxes, ASLR/KASLR, and ARM
PAC. This underscores the critical security risks of aggressive,
stateless speculative optimizations.
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