
DROW: Training-Free Load Speculative Execution Attacks on Apple Silicon

Yuchen Fan∗ Yu Jin∗ Chang Liu† Minghong Sun∗ Xuanzeng Song∗ Tingting Yin‡

Shuwen Deng∗§¶

Abstract
Traditional speculative attacks rely on training hardware
predictors, limiting practicality. We present DROW, exploit-
ing blind bypassing on Apple silicon, where loads specula-
tively bypass stores without training. This primitive circum-
vents mistraining defenses to hijack data and control flow.
DROW achieves 16.3× higher bandwidth than prior art, en-
abling practical exploits including cross-page browser leak-
age,ASLR/KASLR bypassing, and PAC circumvention.

1 Introduction

Speculative execution attacks have fundamentally altered se-
curity [3], yet most rely on a training phase to prime microar-
chitectural predictors. This dependency necessitates deep mi-
croarchitectural knowledge and complex gadget preparation.
In contrast, training-free attacks, which trigger speculation
unconditionally, significantly lower the barrier to exploitation
but remain largely explored only in control-flow contexts on
x86 [1]. This work investigates whether training-free mecha-
nisms exist for data-flow speculation in other architectures.

We identify blind bypassing on Apple M-series CPUs—a
mechanism where loads speculatively bypass older stores
without training. Based on this, we propose DROW, a training-
free Spectre-type attack. We address challenges of exploit-
ing training-free primitives, including the lack of trainabil-
ity and the difficulty of hijacking control flow. Our contri-
butions are: (1) disclosing the blind bypassing mechanism
on Apple Silicon; (2) characterizing the Spectre-BB primi-
tive, achieving 16.3× higher bandwidth than state-of-the-art
training-based attacks [2]; and (3) demonstrating real-world
attacks including leaking cross-page data in Chrome, bypass-
ing ASLR/KASLR (100% success), and compromising ARM
Pointer Authentication (PA).

*Department of Electronic Engineering, Tsinghua University
†Department of Computer Science and Technology, Tsinghua University
‡Independent researcher
§Zhongguancun Laboratory
¶Shuwen Deng is the corresponding author.

Training IterationSt
al

e 
Va

lu
e 

R
ec

ei
vi

ng
 R

at
e

Figure 1: Bypass frequency vs. training iterations. Apple Silicon stays at 100% (Training-
free), unlike Cortex.

*NewPtr

NewPtrStore

Architectural
Visit

Figure 2: Overview of the Spectre-BB experiment. The speculative load retrieves a stale
pointer to access secret data.

2 The Spectre-BB Primitive

Discovery of Blind Bypassing. We systematically analyzed
load speculation on ARM and Apple Silicon. Figure 1 com-
pares the bypass frequency under varying training iterations.
On ARM Cortex-A76, the predictor learns to suppress the
bypass as iterations increase (dropping to 0%). In contrast, Ap-
ple M-series CPUs maintain a ≈100% bypass rate regardless
of iterations. This confirms the mechanism is training-free
and stateless, making it immune to history-based defenses.
Primitive Construction. Figure 2 illustrates the Spectre-BB
gadget. We deliberately stall a store instruction (e.g., via de-
pendency chains). A subsequent load speculatively bypasses
this store, retrieving a stale value (attacker-controlled pointer)
from the memory hierarchy. The CPU speculatively derefer-
ences this pointer, encoding the secret into the cache before
the pipeline flushes.
Activation Conditions. Bypassing is suppressed only by di-
rect (RAW) or same-operand dependencies. Same-source
dependencies (e.g., array indexing) do not inhibit the bypass.
The speculative window is limited primarily by ROB capacity.
Coherence-Based Eviction. We use a remote-core writing
thread to induce coherence invalidations, creating a privilege-
free timing channel to extract the signal from Figure 2.

1



3 Real-world Exploitation

We evaluate DROW’s severity by identifying gadgets in major
software and executing three end-to-end attacks on macOS
15.5 and Chrome v139.
Gadget Analysis & Capability. We developed a symbolic
execution scanner based on angr to detect Spectre-BB gad-
gets (stalled store followed by dependent load). We identi-
fied 40,889 unique gadgets in the macOS XNU kernel, 60
in MbedTLS, and 13 in OpenSSL. In a native PoC on M3,
Spectre-BB achieves a leakage bandwidth of 94.8 Kb/s with
99.07% accuracy, outperforming the training-based SLAP
attack (5.8 Kb/s) by 16.3×.
Case 1: Breaking Browser Sandboxes. We bypass Chrome’s
site isolation using WebAssembly (WASM). Since WASM
enforces strict runtime bounds checks, we exploit the WASM
Garbage Collection (GC) proposal to induce a Type Con-
fusion. We craft a gadget where the JIT compiler specula-
tively treats an attacker-controlled 64-bit integer as a pointer
to a structured object (e.g., ‘struct.ref‘). Under Spectre-BB,
the CPU bypasses the type check and dereferences this inte-
ger, allowing arbitrary memory reads. To exfiltrate data, we
constructed a custom high-resolution timer in WASM, distin-
guishing L1 hits/misses. As shown in Figure 3, we achieve
cross-site leakage at 21.3 bps with 94.7% accuracy.
Case 2: Breaking ASLR/KASLR. DROW serves as an oracle
to distinguish mapped pages from unmapped holes. When
Spectre-BB accesses an unmapped page, the speculative load
fails to fill the cache; accessing a mapped page leaves a trace.
• User ASLR: We scan the virtual address space to locate

the dyld shared cache, achieving 100% success in <140ms.
• KASLR: We leverage a userspace-triggerable gadget in

the XNU kernel (via ‘ioctl‘). By passing guessed addresses
to the kernel gadget, we probe the kernel map, breaking
KASLR with 100% success in ≈24s.

Case 3: Breaking Pointer Authentication (PAC). ARM
PAC signs pointers to ensure integrity. However, speculative
execution suppresses authentication faults. On M1/M2/M3,
we use Spectre-BB to speculatively execute the autia instruc-
tion. We brute-force the PAC signature (upper bits). Only a
correct guess allows the subsequent load to succeed and fill
the cache line. This side-channel allows forging valid pointers
without the key (96.4% success on M3). Insight on M4: On
the M4 chip, transient autia always speculates as successful
regardless of correctness. While this breaks our oracle for key
recovery, it implies the CPU aggressively ignores integrity
checks during speculation.

4 Discussion & Conclusion

Related Work & Mitigation. Unlike training-based attacks
like PACMAN [4] or SLAP [2], DROW exploits a training-
free mechanism, offering stability and portability. Challeng-
ing mitigation: hardware fixes degrade performance, while

Figure 3: Cross-site data leakage in Chrome using DROW. We recover a secret string
from a victim process with 94.7% accuracy.

software barriers in hot paths incur prohibitive overheads.
Conclusion. We introduce DROW, a training-free primitive on
Apple Silicon. Exploiting unconditional blind bypassing, we
compromise browser sandboxes, ASLR/KASLR, and ARM
PAC. This underscores the critical security risks of aggressive,
stateless speculative optimizations.

Acknowledgment

This work was generously supported by the NSFC (No.
U24A6009, 62572265), National Key Research and Devel-
opment Program of China under Grant (2024YFB4405400),
Youth Student Basic Research Project (Undergraduate Stu-
dents) of the National Natural Science Foundation of China
(Grant No. 625B1004), Beijing Municipal Science and Tech-
nology Project (Nos.Z241100004224028), Beijing Natural
Science Foundation (L247013). We further would like to
thank Shuo Li and Wenjian He from Linx Lab for offering
feedback regarding the analysis of real-system vulnerabilities.

References

[1] Yun Chen, Ali Hajiabadi, and Trevor E Carlson. Gad-
getspinner: A new transient execution primitive using
the loop stream detector. In 2024 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pages 15–30. IEEE, 2024.

[2] Jason Kim, Daniel Genkin, and Yuval Yarom. Slap: Data
speculation attacks via load address prediction on apple
silicon. In S&P, 2025.

[3] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and
Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1–19, 2019.

[4] Joseph Ravichandran, Weon Taek Na, Jay Lang, and
Mengjia Yan. Pacman: attacking arm pointer authen-
tication with speculative execution. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 685–698, 2022.

2


	Introduction
	The Spectre-BB Primitive
	Real-world Exploitation
	Discussion & Conclusion

