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Abstract
Recent years have seen a surge in security architectures built
on the open RISC-V instruction set architecture. A key en-
abler of this trend has been the standardized Physical Memory
Protection (PMP) extension, safeguarding critical firmware
and forming the foundation for, amongst others, versatile
Trusted Execution Environments (TEEs). However, while
production TEEs on popular x86 and Arm platforms have un-
dergone extensive security vetting, emerging RISC-V TEEs
have received far less scrutiny.

This paper studies the impact of recent memory-aliasing
attacks, originally demonstrated on x86, within the RISC-V
ecosystem. We show that a practical memory-aliasing setup
can fully bypass PMP-based isolation, enabling arbitrary read
and write access to protected memory regions. Using this
primitive, we demonstrate end-to-end attacks on the popu-
lar RISC-V Keystone TEE, achieving full enclave memory
disclosure and, ultimately, completely undermining remote
attestation guarantees by extracting the long-term platform
measurement key. Leveraging open-source RISC-V firmware,
we further develop a practical mitigation that detects rogue
DIMM configurations at boot time, effectively preventing
software-based memory-aliasing attacks. Our findings nuance
the trust in PMP-based isolation and highlight how microar-
chitectural attack vectors from established architectures like
x86 can translate to emerging RISC-V settings.

1 Introduction

RISC-V is an emerging open-source Instruction Set Architec-
ture (ISA) that is gaining increasing traction in both academia
and industry. While early RISC-V deployments primarily
targeted resource-constrained embedded systems, recent de-
velopments have led to the adoption of high-performance
commercial RISC-V cores across the entire computing spec-
trum, including laptops [55, 65], workstations [42, 43], and
servers [52, 54].

As a modern ISA, RISC-V includes standardized support
for privilege levels (machine, supervisor, user) and robust

memory protection mechanisms at both the physical and vir-
tual levels. A cornerstone feature in this respect is Physical
Memory Protection (PMP) [1], a flexible hardware primitive
that enables machine mode to define access-control policies
over contiguous physical address ranges. Operating indepen-
dently of the operating system or hypervisor’s virtual mem-
ory protections, PMP is instrumental in safeguarding high-
privilege memory regions such as firmware. For example, the
key OpenSBI firmware leverages PMP to protect its own mem-
ory and critical memory-mapped I/O devices from potentially
buggy or malicious operating system software. Furthermore,
due to its flexibility and standardized availability across RISC-
V platforms, PMP has become a foundational building block
for a wide range of Trusted Execution Environments (TEEs)
on RISC-V [6, 7, 12, 19, 31, 33, 36, 38, 47, 64]. These TEEs
typically rely on a trusted security monitor running in ma-
chine mode to configure PMP entries that isolate enclaves
from the rest of the system, including the privileged operating
system. Among the various RISC-V TEE implementations,
Keystone [36] stands out as a popular base platform due to its
open-source nature, extensibility, and modular architecture.
Notably, Keystone is the only RISC-V project recognized
under the Linux Foundation’s Confidential Computing Con-
sortium [10].

While TEEs have been extensively deployed and scruti-
nized on other architectures, such as Intel Software Guard
Extensions (SGX), AMD Secure Encrypted Virtualization
(SEV), and Arm TrustZone, security architectures for pro-
duction RISC-V cores have only received limited architec-
tural [62,63] and microarchitectural [20,29,41] scrutiny. Rec-
ognizing PMP’s pivotal role as a standardized hardware prim-
itive for enclave and firmware isolation, formal verification
efforts have focused on its architectural correctness [8], or the
security guarantees that PMP provides to software [23]. How-
ever, to our knowledge, no prior work has examined PMP’s
resilience against microarchitectural attacks.

In this paper, we investigate the feasibility and impact of
memory aliasing attacks [14,44], recently disclosed in the con-
text of x86-based TEEs, on the RISC-V PMP access control
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mechanism. Specifically, we examine the BadRAM [14] prim-
itive, a novel and low-cost microarchitectural attack that lever-
ages limited one-time physical access to configure malicious
Dynamic Random-Access Memory (DRAM) topologies. By
deliberately modifying DRAM size metadata reported by in-
dividual Dual In-line Memory Modules (DIMMs) during sys-
tem boot, BadRAM attackers introduce aliases in the CPU’s
physical address space that resolve to the same physical loca-
tion on the DIMM. This aliasing effect enables bypassing of
CPU-level physical access controls, ultimately compromising
the confidentiality and integrity of encrypted enclave memory.
While opaque firmware-level mitigations have since been de-
ployed on Intel SGX [30] and AMD SEV [3] platforms, the
applicability of BadRAM to RISC-V systems remains unex-
plored. This work addresses that gap by adapting BadRAM
to RISC-V and evaluating its impact on PMP-based isolation
and potential mitigation strategies.

Target Platform. In line with BadRAM attacks on Intel
and AMD x86 platforms, we target RISC-V motherboards
equipped with discrete (i.e., pluggable) DIMMs, which are
becoming increasingly common on mature, higher-end RISC-
V systems [15, 42, 43]. For our experiments, we use the Milk-
V Pioneer board [42], featuring a high-performance 64-core
Sophon SG2042 server-class CPU and four standard DDR4
DIMM slots.

We extend the Keystone framework to run natively on this
platform, including support for secure boot and remote attes-
tation. The Milk-V port developed in this work represents the
first deployment of Keystone on a silicon board featuring an
advanced out-of-order RISC-V CPU, enabling future microar-
chitectural research on RISC-V TEEs beyond the memory
aliasing analysis presented in this paper.

Main Findings. We then adapt the BadRAM primitive to
RISC-V and demonstrate that memory aliasing can trivially
bypass PMP-based isolation after reverse-engineering the
physical-to-DRAM address mapping function. By modifying
the untrusted Linux memory allocator, we silently allocate
aliased memory regions to Keystone enclaves, enabling arbi-
trary reads and writes of confidential enclave data. Critically,
in an end-to-end attack on Keystone’s remote attestation prim-
itive, we leak the platform measurement key from protected
machine-mode memory. This allows us to forge arbitrary
attestation reports and, ultimately, dismantle trust in the Key-
stone RISC-V ecosystem.

To help recover trust, we investigate practical firmware
countermeasures to detect BadRAM at boot time. Specifically,
we extend the zero-state bootloader firmware for the Sophon
SG2042 CPU with two mitigation strategies: a generic alias-
scanning approach, and a highly optimized variant that lever-
ages prior reverse-engineering insights into Sophon’s propri-
etary DRAM address function [41] to minimize the amount of

required memory accesses. Our work presents the first open-
source and inspectable alternative to the opaque, proprietary
firmware mitigations deployed on Intel [30] and AMD [3]
platforms. We experimentally evaluate both mitigation tech-
niques and find that the optimized version can reliably detect
malicious memory configurations with negligible boot-time
overhead.

Contributions. In summary, our main contributions are:

• We detail the modifications needed for native hardware
support of the Keystone framework on the Milk-V Pio-
neer board, which features Sophgo’s SG2024 SoC — a
RISC-V platform with an out-of-order CPU design.

• We port a memory aliasing primitive (BadRAM) to
RISC-V and demonstrate the feasibility of these attacks
on RISC-V by breaking PMP and leaking protected
enclave-allocated memory.

• We evaluate the impact of BadRAM attacks by break-
ing remote attestation checks on Keystone enclaves and
leaking the Security Monitor (SM)’s secret key.

• We propose a mitigation strategy to defend against
BadRAM-RISC-V attacks and discuss limitations and
countermeasures.

Ethics and Open Science. To support reproducibility of
our work and facilitate future research on the security anal-
ysis of RISC-V TEEs, we open-source our experimental
setup, attack implementations, and mitigation prototypes at
https://github.com/dnet-tee/PMPlease. This includes
our Keystone port for the Milk-V Pioneer platform, untrusted
Linux kernel attack code, firmware-level mitigations, and eval-
uation scenarios.

All experiments were conducted on our own local machines
without involving any personal data. While Keystone explic-
itly aims to become a production-ready platform [34], we are
not currently aware of any real-world production deployments
that would necessitate responsible disclosure.

Paper Outline. The paper is organized as follows. § 2 out-
lines key RISC-V features and memory interface attacks. § 3
presents the problem statement, threat model, and setup, while
§ 4 reviews related work on RISC-V TEEs. § 5 details the
Keystone port to the Milk-V Pioneer board with secure boot,
and § 6 evaluates BadRAM-induced physical memory alias-
ing attacks on enclaves. Mitigations are discussed in § 7, and
§ 8 concludes the paper.

2 Background and Related Work

This section introduces the necessary background on the
RISC-V ISA and boot process, as well as prior work on mem-
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Figure 1: RISC-V processor privilege levels with (right) and
without (left) virtualization support.

ory interface attacks on Intel and AMD x86 platforms.

2.1 RISC-V
RISC-V is an open-standard ISA designed with modularity
and extensibility in mind. Its open nature has made it an at-
tractive platform for both academic research and industrial
development. Unlike proprietary ISAs such as x86 and Arm,
RISC-V is not controlled by a single vendor but is governed by
an open consortium comprising both industry and academic
partners. The architecture follows a modular design philoso-
phy, consisting of a minimal base ISA that can be extended
with a rich set of optional extensions to support advanced
CPU features. The RISC-V consortium oversees the standard-
ization process, which encompasses defining extensions and
maintaining compatibility across implementations.

RISC-V Privilege Levels. To support modern operating
systems, the RISC-V privileged architecture [1] defines a
common privilege hierarchy comprising three main modes:
machine (M), supervisor (S), and user (U), as visualized in
Fig. 1 (left). Regular user applications are intended to run
in U-mode, isolated by an Operating System (OS) running
in S-mode. M-mode holds the highest privilege level and
has unrestricted access to all system resources. M-mode is
intended for low-level firmware that can provide platform-
specific functionality to a general-purpose operating system
running in S-mode through a standardized Supervisor Bi-
nary Interface (SBI) specification [2]. The OpenSBI [26]
project provides an open-source reference implementation
of M-mode SBI firmware for popular RISC-V platforms and
has, furthermore, served as a basis for custom security archi-
tectures (cf. Section 4).

M-mode operates exclusively on physical addresses,
whereas U- and S-modes access virtual addresses that are
translated to physical addresses via a page-table data structure
set up by the OS. Importantly, M-mode can impose additional

read-write-execute access restrictions on physical addresses
as discussed in the next subsection.

A recent addition to the RISC-V execution model is the
hypervisor mode (HS-mode) [49], a privileged mode designed
to virtualize S-mode and U-mode, thereby enabling efficient
OS hosting on top of type-1 or type-2 hypervisors. Analo-
gous to x86 virtualization, HS-mode introduces an additional
address translation stage, from guest-physical addresses to
supervisor-physical addresses, to support efficient virtualiza-
tion of guest OSs. We note that HS-mode has only recently
been ratified and is not yet widely available in commercial
RISC-V hardware, including the Milk-V Pioneer board used
in our evaluation (cf. Section 3.3).

Physical Memory Protection (PMP). To enforce isolation
between privilege modes, RISC-V provides a hardware mech-
anism known as Physical Memory Protection (PMP) [1]. PMP
allows software executing in M-mode to configure access-
control policies over specific physical memory regions. PMP
is controlled by a set of Control and Status Registers (CSRs)
that are configurable only from M-mode and restrict access
to contiguous physical memory regions from lower-privilege
modes, i.e., HS-mode, S-mode, and U-mode. Access control
is transparently enforced by the hardware at every memory
access. PMP entries are statically prioritized and each entry is
defined by a pmpaddr register and an 8-bit subset of a pmpcfg
register, where the former is used to derive a contiguous phys-
ical address range, and the latter defines an addressing mode
and permission bits (read, write, execute) for that region. Each
RISC-V core can have up to 64 PMP entries, albeit in practice,
fewer are implemented. The SG2042 CPU [58] implements 8
entries with a 2048-byte granularity.

Reflecting its critical role in enforcing security and iso-
lation within the RISC-V ecosystem, several recent ex-
tensions build upon and further extend PMP. The ratified
SMEPMP [32] extension allows M-mode to voluntarily re-
strict its own access to designated PMP regions, helping
to mitigate confused-deputy vulnerabilities. Furthermore,
IOPMP [21] (under development) extends PMP’s isolation
guarantees to untrusted DMA peripherals. Finally, SPMP [17]
(also under development) introduces additional PMP registers
that S-mode can configure to isolate U-mode tasks on low-end
IoT cores lacking virtual memory support.

An exemplary use case for PMP is isolating M-mode
firmware code and data from a potentially buggy or mali-
cious operating system. This is how PMP is employed in
the OpenSBI project, which additionally supports isolating
system-level partitions into dedicated domains [56]. As an
ISA-level primitive for configurable memory access control,
PMP also serves as the foundation for RISC-V TEEs (cf. Sec-
tion 4). Frameworks such as Keystone [36] leverage PMP
to carve out isolated enclave regions that are inaccessible to
an untrusted operating system or hypervisor. This typically
involves implementing a security monitor software layer run-
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ning in M-mode, which constitutes the platform’s Trusted
Computing Base (TCB) and is responsible for configuring
PMP entries and mediating context switches to and from en-
claves.

RISC-V Boot Phases. The RISC-V boot process consists
of multiple stages that transition through different privilege
levels [48]. The SG2042 Milk-V board [58], used in this work,
includes two CPU subsystems: (i) the main 64-core RISC-V
CPU; and (ii) an Arm-based System Co-Processor (SCP).

During system startup, execution begins on the SCP sub-
system, which performs platform initialization. This includes
configuring the PCIe topology and controllers, initializing
DRAM by reading the Serial Presence Detect (SPD) chip via
the I2C bus, setting up the on-chip mesh interconnect, and
loading the main RISC-V CPU firmware, referred to as the
Zero Stage Boot Loader (ZSBL), from either the SPI flash
chip or an SD card [58]. After completing these steps, the
SCP releases all 64 RISC-V cores, which then begin execution
from the ZSBL.

The ZSBL, running in M-mode, performs essential hard-
ware initialization, sets up the execution stack, and loads the
next boot stage from persistent storage into memory. Control
is then transferred to OpenSBI, which also operates in M-
mode as system firmware, providing a standardized runtime
environment and service interface between machine mode
and the operating system executing in supervisor mode. Once
system initialization is complete, OpenSBI hands off con-
trol to software executing in S-mode, typically a bootloader
or directly the Linux kernel, which eventually transitions to
U-mode for user-level execution.

2.2 Memory Interface Attacks
Confidential computing, enabled by hardware-level TEEs,
aims to securely offload sensitive computations to untrusted
remote platforms such as cloud providers. This threat model
inherently includes physical datacenter access by rogue em-
ployees or local law enforcement. To mitigate such threats,
production-grade TEEs commonly employ transparent mem-
ory encryption, protecting against straightforward attacks
such as cold-boot extraction [66]. However, recent stud-
ies [9, 13, 14, 53] have demonstrated that even adversaries
with limited physical access and modest resources can suc-
cessfully compromise encrypted memory in production x86
TEEs from Intel and AMD. These attacks generally fall into
two categories: (i) passive side-channel attacks on the CPU–
DRAM interface using interposers; and (ii) active memory
aliasing attacks that manipulate the physical address mapping
between the CPU and DRAM.

Passive DRAM Interposers. The MemBuster attack [35]
targets the (now deprecated) Intel Client SGX platform. Al-
though Client SGX’s memory encryption engine [22] pro-

vided strong cryptographic protection for memory confiden-
tiality, integrity, and freshness, the address bus remained nec-
essarily unencrypted. MemBuster exploits this weakness by
using a commercial DDR4 interposer, costing approximately
$170,000, to capture address-bus traffic and recover secrets
from non-constant-time code execution.

Follow-up work by Seto et al. [53] demonstrated that such
DDR4 interposer attacks can be reproduced with inexpen-
sive, second-hand hardware costing under $1,000 by lowering
DRAM speed via SPD DIMM configuration. Their WireTap
attack targets Intel’s newer Scalable SGX implementation
for server platforms. Notably, Scalable SGX replaced Client
SGX’s strong memory encryption with a weaker, determinis-
tic scheme that provides only confidentiality (without integrity
or freshness) to support much larger protected memory re-
gions, i.e., on the order of terabytes rather than megabytes [30].
As a result of this deterministic design, WireTap can exploit
powerful ciphertext side channels [37] to fully compromise
SGX protections. The WireTap approach has since been ex-
tended to DDR5 platforms by Chuang et al. [9].

Memory Aliasing. The BadRAM primitive, introduced by
De Meulemeester et al. [14], is a practical, low-cost method
for introducing physical-address aliasing on DDR4 and DDR5
memory modules. BadRAM assumes an adversary capable of
modifying and reprogramming the SPD EEPROM of a con-
nected DIMM. Such tampering can be achieved either through
brief physical access or remotely via software control, e.g., by
manipulating the x86 platform initialization BIOS logic or us-
ing the standard i2c-tools Linux utility when the DIMM’s
SPD is shipped unlocked. By adjusting the SPD metadata
size field to report a capacity twice that of the actual physi-
cal DRAM. BadRAM causes the system to establish distinct
CPU-physical address mappings that silently resolve to the
same DRAM locations. This aliasing effect allows effective
bypass of the CPU’s physical address access-control restric-
tions. In practice, BadRAM has been demonstrated on AMD
SEV-SNP platforms, where an attacker can corrupt or replay
ciphertexts, exfiltrate secrets, and forge end-to-end attacks
that undermine attestation guarantees. The issue has since
been mitigated on Intel [30] and AMD [3] platforms through
opaque firmware updates that attempt to detect aliasing during
the boot process.

In follow-up work, De Meulemeester et al. developed Bat-
teringRAM [13], which bypasses the boot-time firmware mit-
igations introduced for BadRAM using a custom, low-cost
hardware interposer. This interposer requires physical access
to install between the CPU and the DIMM, similar to the
aforementioned WireTap [53] attack, and can be dynamically
activated at runtime to induce transparent memory aliasing.
By remaining disabled during the boot phase, BatteringRAM
trivially circumvents firmware-based alias detection, enabling
ciphertext replay and breaking both Intel Scalable SGX and
AMD SEV-SNP on fully up-to-date platforms.
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Ultimately, BatteringRAM and WireTap expose fundamen-
tal security-performance trade-offs in modern confidential-
computing architectures that rely on scalable memory encryp-
tion without freshness protection. We discuss the implications
of these physical-access attacks for the RISC-V ecosystem
and our firmware mitigation in Section 7.

3 Problem Statement and Threat Model

3.1 Problem Statement
RISC-V’s PMP mechanism provides hardware-enforced iso-
lation for designated physical memory regions. On every
memory access, the hardware performs a privilege check and
blocks any physical memory accesses lacking the required
permissions. This mechanism forms the foundation for RISC-
V TEE frameworks, such as Keystone, which leverage PMP
as a core architectural feature to isolate enclave memory from
untrusted software.

However, PMP guarantees protection only for explicitly
defined physical addresses. If the physical-to-DRAM address
mapping can be manipulated or aliased at the DRAM level,
PMP may protect only the nominal addresses while leaving
their aliased counterparts exposed to adversarial access. In
this paper, we examine the robustness of RISC-V’s PMP
mechanism against such memory aliasing attacks, specifically
the BadRAM attack primitive, previously demonstrated only
on Intel and AMD x86 architectures [14]. Our evaluation
focuses on the Keystone framework [36], one of the most
mature and flexible RISC-V enclave systems, though our
findings generalize to any TEE design or firmware isolation
guarantee that relies on PMP for physical memory isolation.

3.2 Threat Model
At the software level, we assume the standard TEE threat
model, where all software components outside the enclave
and security monitor are considered attacker-controlled. Con-
cretely, we assume the adversary has elevated privileges on
the target machine, i.e., has full control over S-mode, includ-
ing the Linux kernel. We assume all code running in M-mode,
including OpenSBI, Keystone’s security monitor, and any
platform-specific ZSBL, is trusted and free of exploitable vul-
nerabilities. Notably, as our case-study attacks (cf. Section 6)
target Keystone’s generic attestation and enclave-loading pro-
cedures, the adversary need not have access to the source or
binary of specific application enclaves.

At the hardware level, we target RISC-V boards that use dis-
crete, non-soldered DIMMs, such as the Milk-V Pioneer [42],
Milk-V Titan [43], and DeepComputing Station-V [15] plat-
forms. As RISC-V platforms mature and gain more share
in server and workstation markets, such configurations will
expectedly become the norm. Following the threat model
of prior BadRAM attacks on Intel and AMD x86 platforms,

Figure 2: Experimental setup showing off-the-shelf Milk-
V Pioneer motherboard, including Sophon SG2042 RISC-V
CPU (top, under fan) and single DDR4 DIMM (bottom) with
unlocked SPD.

we assume at least one of the following capabilities: (i) the
SPD EEPROM(s) on one or more DIMMs are not locked
(a behavior observed in multiple off-the-shelf DIMM ven-
dors [14]), allowing remote reprogramming via standard util-
ities; or (ii) the adversary can manipulate the (potentially
untrusted) platform-initialization firmware that configures the
memory controller; or (iii) the adversary gains one-time phys-
ical access to a memory module (e.g., during a data-center
maintenance window or via supply-chain compromise) and
can unlock or modify the DIMM’s SPD contents.

Finally, at the TEE level, Keystone does not include mem-
ory encryption by default. Several proposals add memory-
encryption support for Keystone, but they either demand
substantial hardware changes [67] or rely on a secure on-
chip scratchpad region [5] that is unavailable on our Milk-
V platform. Consequently, our case-study attacks assume a
standard Keystone deployment without memory encryption.
While unencrypted memory buses may permit direct physical
snooping, such attacks require physical access, and special-
ized equipment. In contrast, on platforms where the SPD is
writable from software, BadRAM aliasing attacks can be in-
troduced entirely by a privileged software adversary. Even in
the absence of memory encryption, physical memory isolation
mechanisms such as PMP critically depend on the correctness
of the underlying memory topology and can be subverted by
attackers that never directly interact with the memory bus.

If scalable memory encryption is present, our aliasing prim-
itive would still enable ciphertext replay and corruption, simi-
lar to prior x86 attacks [13, 14]. Even for the strongest level
of memory encryption, guaranteeing confidentiality, integrity,
and freshness, aliasing can facilitate low-cost side-channel
analysis to infer memory write events, similar in spirit to
MemBuster [35], but at a fraction of its cost.
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3.3 Experimental Setup

All experiments in this paper were conducted on an off-the-
shelf Milk-V Pioneer board [58], depicted in Fig. 2. This
board is powered by a high-end Sophon SG2042 CPU fea-
turing 64 C920 out-of-order RISC-V cores at 2 GHz and
supporting up to 128 GB of DDR4 memory. We equipped
our system with a single 32 GB DDR4 memory module
(MTA18ASF4G72PDZ-3G2E1).

We base ourselves on the chip vendor’s (Sophgo Technolo-
gies) open-source ZSBL [61], which we modified to include
support for secure boot and our mitigations, as discussed in
Sections 5 and 7. Furthermore, we modified Sophgo’s fork
of OpenSBI v1.2 [60] to include support for the Keystone
security monitor, which we also detail in Section 5.

Introducing Memory Aliases From Software. We lever-
age the BadRAM attack primitive to introduce aliases in
the processor’s physical memory view. By modifying the
DIMM’s SPD configuration, an adversary can create a dis-
crepancy between the reported and true size of the installed
DIMM.

While BadRAM originally required one-time physical ac-
cess to the victim DIMM, we note that the System Manage-
ment Bus (SMBus) to which the SPD is connected is fully
exposed to software on our platform. Furthermore, unlike
Intel and AMD systems, we note that the Pioneer board does
not include any protections against writes to the SPD. As a
result, a privileged software adversary can issue commands to
an unlocked SPD chip, mounting the BadRAM attack entirely
from software.

To simulate this scenario, we manually unlocked the DIMM
in our system and verified that we could overwrite the
SPD configuration purely from software. We mounted the
BadRAM attack by doubling the reported memory size to
64 GB, which took effect after a system reboot. While we
experimentally verified this technique on the Pioneer board,
other RISC-V boards may not expose the SMBus in the same
way, or may block writes to the SPD entirely. Note that,
though required by JEDEC [27, 28], in practice, off-the-shelf
memory modules do not always properly lock the base con-
figuration blocks of the SPD [14, 39]. Furthermore, the SPD
may be unlocked or modified as part of a supply-chain attack.

4 RISC-V Security Architectures

In this section, we review key efforts implementing TEEs on
RISC-V and highlight the central role of PMP in enabling
enclave creation and isolation. We then focus on the Keystone
framework, which serves as the target of the memory aliasing
attacks demonstrated in this work.

4.1 RISC-V TEEs

When developing a TEE, designers often face the dilemma
of either relying on existing complex architectures, with
their large and difficult-to-verify TCBs, or creating a custom,
minimal design. A notable approach to the latter is found
in monitor-based TEEs, which employ a thin, trusted soft-
ware layer to enforce isolation and maintain a small TCB.
Costan et al. introduced Sanctum [12], a RISC-V TEE that
provides strong, formally provable isolation guarantees for
concurrently executing software, conceptually similar to Intel
SGX. Although Sanctum requires several hardware modifi-
cations to support user-space enclaves, it demonstrates the
feasibility of the trusted monitor paradigm.

On RISC-V, several research projects have proposed frame-
works that leverage PMP, and possibly architecture-specific
hardware abstractions, coupled with a trusted security monitor
layer in M-mode to enable isolated TEEs. Weiser et al. present
TIMBER-V [64], targeting embedded and Internet of Things
(IoT) devices through a tagged-memory architecture that en-
hances flexibility and efficiency in isolation for embedded
systems. Their design reduces memory fragmentation, en-
ables dynamic reuse of untrusted memory, and introduces
new concepts for secure memory sharing across protection
domains. Bahmani et al. propose CURE [6], a RISC-V en-
clave architecture that offers support for multiple enclave
types — (i) sub-space, (ii) user-space, and (iii) self-contained
— allowing for tuning according to application requirements.
Lee et al. introduce Cerberus [33], a formally verified frame-
work for secure and efficient memory sharing between en-
claves. Cerberus enables enclaves to share memory securely
by enforcing immutability and is implemented atop the exist-
ing Keystone framework, extending its isolation guarantees to
multi-enclave communication scenarios.

Similar to AMD SEV, Intel TDX, or Arm CCA, there are
multiple research projects developing RISC-V hypervisor-
based TEEs. Ozga et al. [46] introduce Assured Confiden-
tial Execution (ACE), an open-source confidential computing
technology targeting embedded RISC-V systems. ACE de-
fines a set of design principles and methodologies that can
be universally used as a basis for designing firmware that
requires verification. Ozga et al. [45] also provide a processor-
independent confidential computing architecture that can be
applied to specific hardware for which the authors imple-
mented the Security Monitor.

Influenced by ACE, Sahita et al. propose CoVE [50], an
ISA and non-ISA extension for creating TEE virtual machines
(TVMs) on RISC-V. This architecture depends on the TEE
Security Manager (TSM) that operates in M-mode. TSM fa-
cilitates transitions between confidential and non-confidential
operations, provides memory management functionality, and
ensures proper isolation and security. CoVE utilizes two sep-
arate Application Binary Interfaces, one for allowing TVMs
to communicate with the TSM and another for the hypervi-
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sor to invoke management functions from the TSM driver,
respectively. To achieve privileged operation modes for host-
software while providing separation between components
existing inside and outside the TCB, CoVE proposes the con-
cept of Confidential-mode qualifier. This qualifier state is
kept minimally, utilizing one bit in each hart, and is essen-
tially propagated to PMP, MMU lookups, and SoC.

4.2 Keystone Framework
The Keystone framework is an open-source project that fa-
cilitates the flexible, extensible creation of TEEs on RISC-V
platforms, allowing designers to tailor the TCB to specific se-
curity and performance requirements. Its primary objective is
to provide an adaptable software-based design that avoids the
rigidity often imposed by hardware-bound implementations.
Keystone leverages RISC-V’s hardware abstractions, partic-
ularly PMP to establish isolated memory regions in which
enclaves can execute securely, even in the presence of an
untrusted OS.

Keystone Operation Modes. Keystone is organized around
three main components: (i) the SM, which operates in M–
mode; (ii) the Enclave Runtime (RT) component running in S–
mode; and (iii) one or more Enclave Applications (EApps) ex-
ecuting in U-mode. Keystone extends the OpenSBI firmware
to include the SM, the only part of the framework that exe-
cutes with machine-level privileges. Figure 3 illustrates how
these components are organized across the RISC-V privilege-
level hierarchy.

Security Monitor. The SM establishes the system’s secu-
rity boundaries without requiring additional resource man-
agement. Based on the Keystone manual, the SM exposes
functionality callable by the enclaves and the OS through the
SBI. The SM is responsible for enforcing access control over
the memory regions assigned to enclaves through the PMP
mechanism. It also manages remote attestation, synchronizes
PMP entries, handles enclave threading, and implements ba-
sic side-channel mitigations. During initialization, the SM
explicitly configures the first PMP entry to protect its own
memory region, accessible exclusively by the SM, and the
last PMP entry to define the untrusted memory region, which
typically spans the entire DRAM and is made accessible to
the operating system during boot. The remaining PMP entries
are dynamically allocated, with one entry consumed per active
enclave.

Enclave Memory Isolation. Upon enclave creation, the
SM assigns a dedicated PMP entry to the enclave to protect
its memory from U- and S-mode software. Keystone also
allows the OS to allocate contiguous memory regions within
the untrusted address space, which serve as a communication

buffer between the enclave and the operating system (referred
to as untrusted shared buffer). When the enclave terminates,
the SM resets the corresponding PMP permission bits, clears
the enclave’s state, and releases the PMP entry for reuse by
subsequent enclaves.

M-Mode

S-Mode

U-Mode

Security Monitor

Operating System

User App 1 User App 2 eapp 1

Runtime
(trusted)

eapp 2

Runtime
(trusted)

Figure 3: Mental model of Keystone framework illustrating
privilege hierarchy and component separation.

Runtime and Untrusted Host. The RT component man-
ages EApps and provides essential enclave services such
as in-enclave virtual memory management, system call han-
dling, standard libc support, and communication with the SM
through the SBI interface. In Keystone’s design, each enclave
executes within its own isolated physical memory region, ac-
companied by a dedicated trusted S-mode RT and an untrusted
host utility process running in U-mode. The host process is
responsible for deploying the RT and EApp, initiating enclave
creation, and exposing edge-call interfaces for communication
between the enclave and the host.

5 Porting Keystone to Milk-V Pioneer

The Keystone framework was initially developed and eval-
uated on the silicon HiFive Unleashed FU540 SoC, as well
as various FPGA-based prototypes and the QEMU software
emulator platform. In this work, we for the first time port Key-
stone to run natively on a high-end desktop-class platform,
the Milk-V Pioneer (SG2042) board [58]. In the remainder
of this section, we describe the OpenSBI firmware, Linux
kernel, and SM modifications required to run Keystone-based
enclaves on this platform.

Buildroot Modifications. Running Keystone on the Milk-
V Pioneer board required extensive modifications to both the
framework and its build process. Keystone relies on Build-
root [16] to efficiently cross-compile all required components
for RISC-V hardware. We modified the Buildroot configu-
ration to integrate vendor-provided forks of OpenSBI [60]
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and the Linux kernel [59], maintained by RevyOS (a custom
Debian-based distribution optimized for the SG2042 ecosys-
tem).

At the kernel level, we introduced a custom Linux configu-
ration derived from the RevyOS setup to ensure the correct
operation of Keystone enclaves on the Pioneer board. The
most critical change was enabling Contiguous Memory Al-
location (CMA) support to allow large enclave instantiation,
since the kernel’s default maximum page order of 10 restricts
the number of contiguously allocatable pages [40]. CMA en-
ables dynamic allocation of large contiguous memory regions
at runtime, which Keystone requires when the untrusted ker-
nel donates contiguous physical memory for enclave creation.
Without CMA support, larger enclaves, e.g., the attestation test
case included in the official repository, cannot be launched.

OpenSBI Modifications. In the current upstream Key-
stone repository, the critical SM component is based on
OpenSBI v1.1, which is incompatible with the Milk-V plat-
form. The Keystone OpenSBI fork overrides several prede-
fined platform definitions with Keystone-specific settings and
introduces invocation hooks for the SM module during each
platform initialization step.

To enable support for the Milk-V Pioneer board, we rede-
fined the platform interfaces within the SM using definitions
from newer OpenSBI releases and reapplied Keystone’s cus-
tom modifications as needed. Because certain features that
Keystone depends on were deprecated in newer OpenSBI ver-
sions, we adopted the SoC vendor’s (Sophgo) development
branch based on OpenSBI v1.2 [60]. This version provides
the required functionality, is fully supported on the Milk-V
board, and integrates cleanly without invasive source-level
changes to Keystone.

Adding Secure Boot on Milk-V Pioneer. To ensure sta-
ble integration between the Pioneer board and the Keystone
framework, and to provide a consistent and complete configu-
ration of the framework on native hardware, we implement
a secure boot functionality within the ZSBL. This addition
establishes a complete chain-of-trust from the early firmware
stage onwards, which validates when enclaves request attesta-
tion evidence from the SM. Specifically, we extend Sophgo’s
ZSBL [61] with a secure boot functionality invoked before
transferring control to the OpenSBI firmware. The caller of
the secure boot process is responsible for sanitizing the core
state and memory. During this process, the bootloader utilizes
fixed, predefined device keys to derive version-specific keys
for the SM using the ed25519 cryptographic algorithm.

We generate for the SM specifically the following compo-
nents based on how Keystone enables secure boot for QEMU
emulated platforms [36]: a hash value (SMhash) computed
by hashing the OpenSBI binary blob (fw_dynamic.bin), a
public-private key pair (SMPubK and SMPrivK , respectively),
derived using the SMhash and the device private key, and a

signature (SMsig) computed over the tuple (SMhash, SMPubK)
signed by the device private key. These values are then passed
to the SM through predefined linker variables declared in
the ZSBL linker script. In our prototype implementation, we
utilize predefined dummy device keys to create a proof-of-
concept chain-of-trust, but realistically, in a production en-
vironment, the keys should be provisioned by the hardware
vendor, e.g., via a TPM or hardware key-storage facility.

Note that the firmware code executing on SG2042’s system
coprocessor, which performs platform initialization before
the ZSBL runs, is based on Arm Trusted Firmware-A, which
also includes secure boot functionality. In theory, it should be
possible to start the chain-of-trust from that stage. However,
the specific firmware code is closed source, preventing us
from modifying it in order to establish the chain-of-trust or in-
specting its implementation to ensure security. Consequently,
we opted to establish our chain-of-trust from ZSBL, which is
fully open source.

Reproducibility. To facilitate the reproducibility of our ex-
periments and encourage future research on Keystone-based
microarchitectural attacks and defenses targeting high-end
out-of-order silicon RISC-V processors, we provide publicly
available forks of all relevant components. These forks incor-
porate our modifications to enable native Keystone support
on the Milk-V Pioneer board, including the adapted ZSBL.
To streamline the development workflow, we also provide
a Dockerfile that automatically builds all required firmware
components (ZSBL, OpenSBI, Linux kernel images, device
trees, etc.) and composes a firmware image that can be easily
flashed to an SD card used to boot the real hardware. With
these modifications, we achieve a fully functional deployment
of the Keystone framework on the Milk-V Pioneer platform.
Our port supports enclave creation, attestation verification,
and large enclave instantiation via CMA, demonstrating end-
to-end functionality with secure boot and remote attestation.

6 Evaluation

In this section, we demonstrate the practical impact of mem-
ory aliasing attacks on RISC-V enclaves with two concrete
attack scenarios: (1) leaking arbitrary enclave memory, and
(2) extracting the SM private secret key (SMPrivK). We demon-
strate the feasibility of these primitives by mounting an end-
to-end attack against Keystone’s enclave remote attestation
process.

6.1 Leaking Arbitrary Enclave Memory

We first demonstrate how BadRAM-induced physical mem-
ory aliases undermine the isolation guarantees provided by
PMP, allowing a malicious host with root privileges to read
arbitrary enclave memory. By introducing memory aliases,
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Figure 4: Conceptual illustration of the BadRAM aliasing
attack on a RISC-V system running Keystone enclaves pro-
tected by PMP. Each PMP entry is defined by pmpcfg and
pmpaddr registers; for simplicity, entries are denoted as
PMP[i], where Keystone uses PMP[0], and PMP[n] entries
for the SM and untrusted OS memory respectively.

the attacker creates a scenario where two physical addresses
map to the same location in DRAM (cf. Figure 4). While the
SM configures PMP entries to protect the enclave’s memory
regions, this protection does not cover the aliased memory
regions. By inferring the addresses that correspond to PMP-
protected memory regions, the attacker can perform arbitrary
reads and writes to the protected memory ranges, violating
isolation guarantees provided by PMP and enabling access to
secret enclave data.

We decompose our attack into two phases: (i) alias dis-
covery, where we locate the aliases and compute the corre-
sponding address mask, and (ii) data exfiltration, in which
we use the discovered alias mask to compute and read from
the aliased address range from the untrusted host context to
recover enclave contents.

Finding Memory Aliases. The mapping between the orig-
inal and aliased memory locations depends on the DIMM
topology and the physical-to-DRAM memory mapping imple-
mented by the memory controller. As this mapping is typically
unavailable to an attacker, the alias mask, i.e., the bit pattern
that maps original to aliased addresses, must be reverse engi-
neered. Because the physical-to-DRAM address mapping is
static for a given memory configuration, its calculation needs
to be performed only once.

We port the simple alias discovery tool proposed by De
Meulemeester et al. [14] to RISC-V. Their approach writes
unique values to memory and scans for the corresponding
changes at other addresses, thereby identifying address pairs
that map to the same DRAM location. This simple technique

is effective in discovering the alias mask as the Milk-V Pio-
neer platform does not implement memory scrambling. Using
this method, we discover that, on our machine, the alias mask
is 0x800000000, i.e., the ghost bit corresponds to the most
significant physical address bit. This result matches previ-
ous reverse engineering efforts on the SG2042 that found
the physical-to-DRAM mapping to be a simple one-to-one
mapping [41].

Leaking Enclave Memory. With the calculated alias mask,
we can easily leak arbitrary PMP-protected memory. From
the untrusted OS, we compile and insert a modified Keystone
driver (the untrusted kernel module responsible for interfacing
with the trusted SM) that prints the base address and the size
of the allocated private memory of the target enclave. We then
calculate the aliased enclave base address as base_addr ⊕
alias_mask. This address range maps to the same location in
DRAM, but falls outside the PMP-protected memory region,
and thus does not have any memory isolation policies set.
The untrusted host can, therefore, access this aliased range
without restrictions, leaking the entire enclave memory. As
our platform does not employ memory encryption, this yields
arbitrary plaintext access to enclave secrets. Note that access
to the original, base enclave addresses are still blocked by
PMP.

6.2 End-to-end Attestation Attack
We now present an end-to-end attack that completely under-
mines Keystone’s remote attestation. We first show how the
attacker can extract the SM private key using the BadRAM
primitive. We then demonstrate how the attacker can use this
key to forge arbitrary attestation reports, marking malicious
enclaves as trustworthy.

Setup. Remote attestation is performed by a trusted verifier,
V , whose goal is to determine the authenticity of an enclave.
For our experiments, we implement a canonical attestation
example using the Keystone SDK and a custom remote veri-
fier. In our setup, the verifier V generates a random nonce and
transmits it to the untrusted hostH, which forwards the nonce
to the enclave. The enclave then requests an attestation report
from the SM, supplying the nonce. The SM then assembles
and signs the report with its private key, and returns it to the
enclave through a shared buffer. The host relays the report to
V , which verifies the report. If all checks succeed, the verifier
accepts the enclave as trusted.

6.2.1 Leaking the SM Private Key

Based on Keystone’s specification, the attestation report con-
tains fields characterizing both the enclave and the SM. To
attest the enclave, the report carries the enclave package hash
(covering the loader, runtime module, and eapp binary), the
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verifier-supplied nonce and its length, and a digital signature
over the tuple ⟨enclave_hash, nonce, nonce_length⟩ computed
and signed with SMPrivK . To attest the SM, the report addi-
tionally includes the ⟨SMhash, SMsig, SMPubK⟩ and the device
public key DevPubK . The verifier recomputes the expected
measurements for both the SM and the enclave, compares
them to the received values, and accepts the enclave only if
all checks succeed. We use this workflow to validate our Key-
stone port on the Milk-V board and refer to the baseline run
as the GoodRAM attestation scenario.

In the BadRAM scenario, where physical aliasing is present,
we implement a malicious host to extract the SMPrivK from
the untrusted OS environment. The attack uses the publicly
available SM metadata contained in a valid attestation re-
port ⟨SMhash, SMsig, SMPubK⟩ as anchors to locate the page
holding the SMPrivK . Concretely, the host scans DRAM page-
by-page via the BadRAM primitive and tests each page for
the presence of the SM metadata. When a page containing the
expected ⟨SMhash, SMsig, SMPubK⟩ tuple is found, the SMPrivK ,
located 64 bytes before the public key, can be extracted. The
scan time depends on the installed memory size, but the pro-
cedure is a one-time cost; once extracted, the SMPrivK can
be used for multiple malicious attacks (forged reports, back-
doored enclaves, etc.).

6.2.2 Forging Attestation Reports

We now use the extracted SM private key (SMPrivK) to mount
an end-to-end attack on Keystone’s attestation pipeline. The
goal is to forge a new attestation report such that a malicious
enclave (Menc) passes the remote verifier’s checks and is
accepted as benign by V .

We use the exfiltrated SMPrivK to synthesize a valid attesta-
tion report from the hostH, and deliver it to the remote verifier.
Recall that a Keystone report contains the enclave hash, the
verifier-supplied nonce and its length, and a signature over
these fields. The malicious host has access to the nonce and
nonce length and can assemble the remaining fields. It ob-
tains the expected enclave hash (by using the benign enclave
image) and populates the report accordingly. Finally, the host
computes a signature over the tuple ⟨enclave_hash, nonce,
nonce_length⟩ using the recovered SMPrivK . The forged re-
port therefore satisfies the verifier’s checks and causes the
malicious enclave (Menc) to be accepted as benign, breaking
trust in Keystone’s remote attestation.

An overview of the attestation attack is shown in Figure 5.
In Phase 0, the ZSBL provisions an SM public-private key
pair, clears the device private key from RAM, and hands
control to OpenSBI. During the OpenSBI boot stage, the SM
initializes its runtime using the provisioned keys (see §2.1). In
Phase 1, we execute a benign attestation, the remote verifier V
generates a nonce and delivers it to the host utilityH, which
forwards it to the enclave. The enclave requests an attestation
report from the SM; the SM assembles and signs the report,
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New Attestation
Report

Security
MonitorVerifier Host Enclave

Fill, Sign Report
Structure

Nonce

Nonce
 Empty Report,

Nonce

Report
Report

 Leak SMPrivK

Nonce

Forge New Report
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SMPubK using

DEVPrivK

Copy SMPrivK,
SMPubK to SM

memory

Phase 0:
Boot Phase

Phase 1: Benign
Attestation

 Verify
Attestation

Report

Phase 2: Attack
Dismantling Attestation

Clear DEVPrivK

Figure 5: Attestation workflow for Keystone enclaves. Phase
0 (boot): ZSBL generates SM keys. Phase 1 (benign): enclave
receives random nonce and asks for a signed remote attesta-
tion report. Phase 2 (attack): a malicious host leaks and uses
the SM private key to forge reports undermining attestation.

and the enclave places the signed report into the untrusted
shared buffer. The host H relays the report to the remote
verifier, which validates report fields and signatures.

During the attack (Phase 2), the untrusted host utility H
leaks SMPrivK and uses it to forge an attestation report af-
ter obtaining the verifier-supplied nonce. The benign SM
generated report contains the device public key (DevPubK),
the SM report fields ⟨SMhash, SMPubK , SMsig ⟩ provisioned
at boot, and the enclave report fields ⟨Enc_hash, Enc_sig,
Nonce, Nonce_len⟩. Here, Enc_hash is computed as the hash
of the Keystone package components (loader, runtime, and
eapp), and Enc_sig is the signature of Enc_hash under the SM
private key, e.g. Enc_sig = Sign(Enc_hash,SMPrivK ). Once
SMPrivK is recovered, the untrusted host H can recompute
and sign arbitrary enclave reports with the correct nonce and
length; the forged report therefore passes the verifier’s checks
and undermines Keystone’s remote attestation.

7 Mitigations

In this section, we discuss mitigation strategies for RISC-V
platforms against BadRAM attacks, and DRAM attacks in

10



Algorithm 1 Linear Boot-Time Alias Detection.
1: for each DIMM do
2: for i = DIMM.base to DIMM.size step 4096 do
3: write(i, i)
4: end for
5: for i = DIMM.base to DIMM.size step 4096 do
6: if read(i) ̸= i then
7: return Alias detected
8: end if
9: end for

10: end for
11: return No aliases detected

general. The root cause exploited by BadRAM is the system’s
blind trust in the memory controller configuration, which
trusts the topology information reported by the DIMM’s SPD
chip. To overcome this blind trust, we propose and implement
two boot-time alias detection mechanisms, and discuss other
mitigations to enhance RISC-V’s security in the presence of
memory aliasing attacks.

7.1 Boot-Time Alias Checking
A practical and robust defense against static memory alias-
ing attacks like BadRAM is to validate the physical memory
layout at boot-time, before initializing any security-critical
components. This ensures that the memory controller was con-
figured correctly and no static aliases are present. Since any
subsequent changes to the SPD will only take effect on the
next boot, this effectively mitigates (software-based) memory-
aliasing attacks. This mitigation is already adopted in practice
to protect commercial TEEs, with Intel’s opaque MCHECK and
Alias Checking Trusted Module (ACTM) [30] and AMD’s
ALIAS_CHECK [3]. However, the specific algorithms and im-
plementation details pertaining to these proprietary solutions
remain undocumented, with no open-source alias-checking
mitigation to date.

Attacker Model. The boot-time alias-checking mitigation
described in this subsection targets adversaries capable of ma-
nipulating memory configuration metadata prior to boot, such
as SPD contents. It effectively detects static memory alias-
ing attacks like BadRAM, including scenarios where aliases
are introduced entirely by a privileged software adversary.
Attacks that induce aliases at runtime or through physical ma-
nipulation of the memory bus, such as BatteringRAM [13] or
Wiretap [53], require hardware-assisted defenses, discussed
in Section 7.2.

7.1.1 Linear Alias Check

A straightforward, platform-agnostic approach to detect
aliases is to perform a linear scan of the entire addressable

Algorithm 2 Optimized Boot-Time Alias Detection.
1: for each DIMM do
2: A← arbitrary DRAM address (e.g., DIMM.base)
3: p← random 64-bit marker value
4: write(A, p)
5: f lush(A)
6: ▷ Iterate over higher-order address bits > 64-byte cacheline
7: for i = 6 to log2(DIMM.size) do
8: B ←A⊕ (1≪ i)
9: m← read(B)

10: if m = p then
11: return Alias detected
12: end if
13: end for
14: end for
15: return No aliases detected

DRAM space for each DIMM. This procedure is summarized
in Algorithm 1. A first pass iterates over all reported memory
regions page by page (i.e., 4 kB) and writes a unique, address-
derived magic value, such as the page’s base address, into the
first 8 bytes of each page. A subsequent verification pass reads
back these values and compares them against the expected
ones. Any mismatch indicates that a value was overwritten
via an alias address, prompting the boot process to abort.

Although conceptually straightforward, this naive imple-
mentation exhibits a time complexity of O(d ·N), where d is
the number of DIMMs and N the reported size per module.
Furthermore, it is susceptible to memory corruption in the
presence of aliases, since it cannot prevent writes from over-
writing memory regions already in use (e.g., by the ZSBL
itself) through their aliased counterparts.

7.1.2 Optimized Alias Check

Instead of naively checking every location, it is possible to op-
timize the algorithm by leveraging insight into how BadRAM
introduces aliases at the microarchitectural level. The attack
works by tricking the memory controller into driving unused
DRAM address lines. Consequently, alias pairs are therefore
not random, but only differ in these unused address lines.

Using platform-specific knowledge of the physical-to-
DRAM address mapping, it is possible to construct an efficient
alias detection algorithm, shown in Algorithm 2. Instead of
testing every page, the algorithm only needs to test for aliases
along every logical DRAM address bit. For a given base ad-
dress A, its potential alias B can be computed by flipping the
respective address bit, as shown on line 8. If a value written
to A is visible from B, then these two addresses are aliased.
This reduces the time complexity to O(d log(N)).
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7.1.3 Implementation and Evaluation

We validate the feasibility of our boot-time detection by imple-
menting both the linear and optimized alias checking routines
within the ZSBL of the SG2042 platform. We modify the
ZSBL to perform the alias checking before platform initializa-
tion and abort the boot process if memory aliasing is detected
in the machine. A secondary option is to allow booting with
secure boot disabled (default for our implementation), which
would cause all subsequent enclave attestation requests to fail.

Optimized Alias Check. Implementing the optimized alias
check requires knowledge of the physical-to-DRAM address
mapping. As the SG2042’s memory controller is not open-
source, we leverage prior work that reverse-engineered its
mapping in the context of RowHammer [41]. Marazzi et al.
find that the SG2042 employs a straightforward linear map-
ping instead of using more complicated XOR-based func-
tions as often observed in Intel and AMD processors. Using
this knowledge, we implement Algorithm 2. While this op-
timization is hardware-specific, our linear alias-check vari-
ant remains fully memory-agnostic and can operate without
knowledge of the underlying mapping, ensuring broader ap-
plicability across RISC-V platforms. We encourage RISC-V
vendors to incorporate alias-checking mechanisms during the
early boot phase, similar to alias-checking implemented by
Intel and AMD.

Performance. We measure the performance impact of our
mitigation by comparing the cycle count of the alias checking
routines and secure boot to the total time for the default,
vendor-provided ZSBL stage. The results for three different
memory configurations are shown in Table 1.

We verified that both algorithms successfully report the
presence or absence of memory aliases. Our results show
that the optimized alias scanning is more than five orders of
magnitude faster than the linear scan in the tested memory
configurations, incurring a negligible overhead compared to
the entire ZSBL stage (<0.0001 %).

Note that the linear alias scan performs an early exit upon
alias detection, explaining the roughly equal number of cy-
cles for the BadRAM configuration and the corresponding
GoodRAM configuration.

7.1.4 Discussion

Fixed Memory Topologies. While our evaluation focuses
on RISC-V platforms with pluggable DRAM modules that
rely on SPD data, many embedded and IoT-class RISC-V
systems use fixed device trees or hardcoded DRAM parame-
ters,without using SPD chips. Similar behavior exists on x86
systems with soldered memory, where SPD data is emulated
or cached in firmware. Although such designs limit direct
SPD-based aliasing, they retain the same trust assumption;

firmware must accurately report the memory topology, thus
a compromised or tampered firmware could misreport these
parameters to induce comparable aliasing effects.

TCB Recovery. Even with the proposed mitigations, recov-
ering the TCB after a potential compromise remains an im-
portant consideration. Once a trusted component is breached,
the integrity of the entire TCB can no longer be assumed.
Restoring trust requires re-establishing the root of trust and
re-measuring critical firmware components such as the ZSBL,
OpenSBI, and Keystone’s SM.

RISC-V currently lacks a standardized recovery mecha-
nism; however, concepts such as authenticated firmware up-
dates and re-keying could support dynamic re-establishment
of trust. Intel’s approach [4, 11] provides a useful reference:
by incorporating dedicated Secure Version Numbers (SVNs),
which are incremented whenever critical firmware is updated,
into key derivations, attestation keys can be automatically
regenerated without user intervention.

We propose to implement a similar mechanism for RISC-
V Keystone at the ZSBL level. By integrating a versioning
counter, analogous to Intel’s SVN, into the (SMPubK , SMPrivK)
keypair generation process, fresh attestation keys for the SM
can be automatically regenerated, enabling trust recovery fol-
lowing critical ZSBL root-of-trust updates.

7.2 Hardware Mitigations
Boot-time alias checks provide a robust and low-cost de-
fense against static aliasing attacks such as BadRAM, which
may be exploited by software adversaries when the SPD is
shipped unlocked. However, these checks are limited to the
boot phase: any aliases introduced at runtime, for example,
through physical tampering with the memory bus [13], remain
undetected. Defending against these more powerful, inher-
ently physical-access adversaries requires more fundamental,
hardware-assisted mitigations.

Strong Memory Encryption. When the external DRAM
memory is considered untrusted, the memory controller may
transparently encrypt the stored data to provide confidential-
ity, integrity, and/or freshness. While some commercial TEEs
have adopted scalable memory encryption designs, opting for
larger protected memory regions rather than integrity or fresh-
ness, robust mitigations require strong memory encryption to
mitigate memory aliasing attacks [13, 14].

One example is Intel’s Memory Encryption Engine
(MEE) [22], which is designed to mitigate any physical tam-
pering with the memory bus. However, the trade-off for these
robust protections is significant, both in terms of performance
from integrity and freshness checks, and storage-wise due to
message authentication codes and the integrity tree. Recent
academic works [18, 25, 51, 57] provide improved solutions,
but haven’t reached adoption by commercial TEEs yet.
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Table 1: Measured execution time of alias checking and secure boot routines under different DRAM configurations. In the 64 GB
BadRAM configuration, SPD tampering is detected and secure boot does not execute, as indicated by (✗).

Setup GoodRAM 1×32 GB GoodRAM 2×32 GB BadRAM 1×64 GB

CPU Cycles Time (s) CPU Cycles Time (s) CPU Cycles Time (s)

Vendor ZSBL 39,762,132,701 19.881066351 39,768,604,853 19.884302427 39,762,132,701 19.884302427
Linear alias check 1,500,525,276 0.750262638 3,160,186,798 1.580093399 1,507,207,189 0.753603595
Opt. alias check 11,051 0.000005525 20,495 0.000010247 11,374 0.000005687
Secure boot 112,175,761 0.05608788 112,886,671 0.056443335 (✗) (✗)

Total (opt) 39,874,319,513 19.937159756 39,881,512,019 19.940756009 39,874,319,836 19.940395994

Extended PMP. Moolman et al. propose a solution which
augments the existing PMP model with system-wide se-
cure memory management capabilities [67]. Their proposal,
Extended PMP (ePMP), extends the memory controller hard-
ware with a new structure containing information from the
PMP tables of each core. This allows for the controller to
maintain a unified view of the protected ePMP regions. Their
design relies upon a dedicated, hardware-level MEE, con-
structing per-region integrity trees whose roots are stored in
secure on-chip memory. While such an approach requires
substantial architectural changes, it effectively bridges the
gap between software-only isolation (as used in Keystone)
and hardware-backed confidentiality and integrity, mitigating
memory aliasing attacks such as BadRAM.

Scratchpads. A mitigation that is already available on some
RISC-V platforms is the use of dedicated scratchpad memory
regions, which are address regions that are not backed by
DRAM For example, the Sifive HiFive FU540 provides a
scratchpad region that allocates data directly into the cache
(L2 Zero Device) [24]. By configuring the WayEnable register,
software can reserve specific cache ways for this purpose.

This mechanism can be leveraged by TEEs like Keystone,
by allowing an enclave to exist only in cache. Keystone al-
ready supports utilizing scratchpad regions if the processor
supports it. The scratchpad address region can be then used
by the SM for enclave allocation.

Components allocated to the scratchpad regions are by defi-
nition not affected by memory alias attacks such as BadRAM,
as the data never resides in the DRAM. However, scratchpads
are only available on select platforms and are not standardized
for RISC-V, whereas TEEs like Keystone are designed to sup-
port all platforms, with or without scratchpads. Furthermore,
scratchpads severely restrict enclave resource management,
constraining both the size and the number of concurrent en-
claves to the available scratchpad capacity. Andrade et al. [5]
explored oversubscribing a limited on-chip scratchpad using
enclave self-paging and software-based memory encryption,
including integrity and freshness guarantees, albeit at the cost
of considerable performance overhead.

8 Conclusion

In this paper, we demonstrated the feasibility of physical mem-
ory aliasing attacks on RISC-V platforms, showing that they
can break access-control guarantees enforced by the critical
PMP memory protection mechanism. We further showed that
such aliasing can be practically exploited to leak protected
enclave memory and compromise Keystone’s remote attes-
tation by extracting the SM private key. Our experiments
were conducted on off-the-shelf hardware, the Milk-V Pio-
neer RISC-V board, after porting Keystone to run natively
with added secure boot functionality.

We also proposed low-cost firmware-level mitigations ca-
pable of detecting BadRAM-style aliasing during boot and
discuss their limitations alongside other potential defenses.
Our findings highlight that RISC-V TEEs relying solely on
PMP require dedicated aliasing countermeasures and prefer-
ably strong memory encryption to protect against physical
adversaries. In a wider perspective, our work illustrates how
subtle microarchitectural attack vectors, long studied in estab-
lished architectures such as x86, can also manifest in emerging
RISC-V platforms.
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