
BROL: Cache-Only Execution for Software Protection

Ruben Mechelinck
DistriNet, KU Leuven, Belgium
ruben.mechelinck@kuleuven.be

Stijn Volckaert
DistriNet, KU Leuven, Belgium

stijn.volckaert@kuleuven.be

Abstract
Industrial-scale reverse engineering is a growing problem
for manufacturers of specialized equipment and machines.
Both software and hardware intellectual property form the
foundation of these manufacturer’s competitive advantage and
revenue, making them attractive targets for malicious competi-
tors. The produced systems typically have limited resources
and lack built-in protection mechanisms for the software it
runs, leaving the software vulnerable to unauthorized duplica-
tion and reverse engineering. We present BROL, a technique
that protects software against reverse engineering and piracy
by binding it to a specific machine and hiding its code in
the CPU’s instruction cache. BROL loads the protected code
from disk, decrypts it with a machine-specific key, and uses
physical memory aliasing and targeted cache eviction to make
the code unavailable in any level of the memory hierarchy ex-
cept for the instruction cache. We implemented BROL for x86
and ARMv7 platforms and show that it reliably protects code
without relying on dedicated security hardware to achieve
maximum security. However, our evaluation also shows that
BROL has non-trivial constraints that limit its applicability.

1 Introduction

In today’s industry, many companies develop integrated
hardware-software systems to deliver specialized functional-
ity, such as in the mechanical and plant engineering sectors.
Counterfeiters increasingly target these systems by replicating
the hardware and copying the software to produce unautho-
rized clones. These activities cause significant economic harm
by diverting revenue, violating intellectual property rights,
and undermining the competitive advantage gained through
R&D investments [51, 66]. While preventing the creation of
hardware with equivalent specifications is often infeasible, es-
pecially since production is commonly outsourced, protecting
the software against copying and reverse engineering remains
a critical and more tractable challenge. This is particularly
pressing because malicious actors can duplicate software with

minimal effort, and the copy will execute identically on any
cloned hardware with matching specifications. Vendors face a
daunting task in defending their intellectual property, as once
a genuine machine is acquired, attackers gain unrestricted
access to both hardware and software components.

Existing defenses against software tampering and reverse
engineering, such as obfuscation [18, 21, 49], trusted exe-
cution environments [41, 42, 63], remote attestation [42],
and hardware-software binding using Physically Unclonable
Functions (PUFs) [23, 24, 26, 47] or dongles [54], offer partial
solutions to the piracy problem. However, these approaches
often require specialized and expensive hardware, incur signif-
icant performance costs, or lack universal applicability across
the diverse platforms used in modern industrial settings.

In this paper, we propose a new technique that hardens
software against unauthorized deployment and reverse en-
gineering. Our idea is to bind each software instance to its
underlying hardware by encrypting the binary image using
PUF-based encryption. At load time, we leverage physical
memory aliasing to intentionally break cache coherency and
erase the decrypted software from RAM while leaving it in the
cache. This makes reverse engineering and code extraction ex-
tremely difficult, even without dedicated security components.
We achieve the strongest protection guarantees by addition-
ally creating a discrepancy between the L1 cache and other
levels of the cache hierarchy. This way, the software resides
exclusively in the CPU’s L1 instruction cache at run time.

We implemented this idea in a proof-of-concept implemen-
tation called BROL (Basically Runs On L1) and evaluated it
on two representative systems. We thoroughly evaluated the
real-world practicality and constraints of the technique and
discuss various design options and trade-offs in this paper.
We conclude that our technique, if fully implemented, is a
promising, inexpensive, and high-performance method that
developers could use to defend against reverse engineering
and piracy. However, it has non-trivial constraints that they
should be aware of. Our current implementation provides full
protection on systems with one cache level against powerful
person-at-the-end attackers who have full system access. We

1

additionally discuss an alternative real-world threat model
where reduced protection is sufficient for systems with multi-
ple cache levels.

2 Background

In this section, we describe the necessary background used
further in this paper.

2.1 CPU Caches
Most CPUs employ high-speed caches of limited size within
the CPU die to offset the high access latency to main memory.
The caches store recently accessed data or prefetch data that
might be used in the near future. Many architectures have
multiple cache levels. Modern x86 CPUs, for example, have
three cache levels [4, 9]. The lowest cache level, i.e., L1, is
located closest to the CPU core and has the lowest access
latency. Due to physical constraints, they are the smallest
of the three levels. The higher levels gradually increase in
size and access latency. On all x86 and most general-purpose
ARM CPUs, the L1 cache is private to a single core and imple-
ments a Harvard architecture, meaning that there is a division
between the instruction cache, i.e., L1i, and the data cache,
i.e., L1d [4, 8, 9]. Other levels of the cache might be shared
between multiple cores and do not separate instructions from
data. We therefore refer to these caches as unified caches. In
a setup like this, the CPU’s instruction fetch unit is connected
only to the L1i cache. This cache can therefore only serve
instruction fetches and not data fetches.

ARM and x86 caches are organized in cache lines and
operate in a set-associative manner [4, 8, 9]. Each memory
location maps to a set of multiple cache lines. Each such
line is called a cache way, and the associativity of the cache
denotes the number of lines within the set. When the CPU
issues a request for a memory location, it selects the cache
set using a bit slice in the requested memory address. On
Virtually Indexed Physically Tagged (VIPT) caches, it uses
the requested virtual address, while it uses the requested phys-
ical address on Physically Indexed Physically Tagged (PIPT)
caches. The cache replacement policy selects the specific way
within the set. This policy determines which older lines are
evicted to make way for the new data. Most vendors do not
disclose the details of their replacement policies. However,
past research has shown that at least some microarchitectures
use adaptive replacement techniques that dynamically switch
policies based on the access pattern [68].

Cache Inclusion. CPUs with multiple cache levels imple-
ment a cache inclusion policy. This policy determines whether
a higher cache level holds copies of all lines in its lower levels.
The L3 cache on older Intel Core CPUs, for example, is inclu-
sive of L2 and L1, which means L3 contains copies of all data
cached in L2 and L1 [9]. We verified, using cpuid on Intel’s
2nd to 8th generation Core CPUs, that L3 is inclusive of its

lower cache levels and L2 is non-inclusive of L1 [9]. Intel cur-
rently uses a non-inclusive cache across its Xeon series and
its modern Core series starting with the twelfth generation,
and its mobile eleventh-generation CPUs [13, 14, 70].

Cache Coherence. Due to the shared nature of data be-
tween cores and caches, the CPU runs a cache coherence
protocol to track modifications to serve each memory re-
quest with the most recent data. The most widely used cache-
coherence protocol, MESI, assigns one of the following states
to each cache line: Modified (M), Exclusive (E), Shared (S),
or Invalid (I). AMD and many ARM CPUs use a derivative
called MOESI with an extra Owned (O) state and Intel uses
MESIF with an extra Forward (F) state [3, 4, 8, 73]. This pro-
tocol allows cache-to-cache transfers when one core requests
data that is already cached in another core. This reduces the
number of requests forwarded to main memory.

On most architectures, however, the L1i cache is not part
of the coherence protocol and the snoop control unit does
not maintain instruction coherence between cores [3, 5, 8, 9,
10, 11]. It does not implement a modified state and requires
special considerations for software containing self-modifying
code. On x86, the CPU guarantees instruction coherence at the
architectural level, not by using the cache coherence protocol,
but by invalidating the cache lines of the modified code from
all cache levels [4, 9]. The only difference on ARM is that self-
modifying code needs to flush those cache lines itself [5, 10].

Memory-Cache Consistency. The operating system has
some degree of control over the CPU’s cache allocation and
coherence policy [4, 5, 9]. By default, user-space pages allo-
cated by the OS use the write-back and write-allocate policies.
This means that (i) loads and stores on these pages operate
on the cache, bringing data into the cache if necessary, and
(ii) the CPU only writes data back to memory when it evicts
a cache line that is in a modified state. The OS can also mark
pages as uncached. In that case, loads and stores on these
pages operate directly on memory.

2.2 Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a hardware prim-
itive that returns a response to a given challenge [29, 60].
They construct these responses based on physical hardware
characteristics resulting from random variations in the manu-
facturing process. This makes it infeasible to clone a PUF’s
behavior in other hardware. Many kinds of PUFs, exploiting
different unclonable hardware characteristics, have been pro-
posed in the literature. For example, SRAM PUFs use the
start-up values of the memory cells as a source of unclonable
randomness [27, 30, 31, 72], while DRAM PUFs use the start-
up values, access-time failures, capacitor retention, or latency
failures [28, 35, 36, 62]. Common use cases for PUFs include
identification and authentication, cryptographic key storage,
and hardware-software binding [40, 43, 53, 58, 60, 69].

2

2.3 Physical Memory Aliasing: BadRAM

In BadRAM, De Meulemeester et al. attack trusted execution
environments, like AMD SEV-SNP and Intel SGX, using
physical memory aliasing within the memory module [22].
Each memory module contains a Serial Presence Detect (SPD)
chip that encodes information about the module’s storage
configuration, e.g., the number of DRAM rows. During boot,
the BIOS uses this data to initialize the memory controller
and constructs the flat physical memory space presented to the
OS. The authors increment the number of row bits in the SPD
chip, effectively doubling the amount of memory reported to
the system. The extra ghost bit, however, is not connected to
any physical address line, so any use of this bit is ignored.
Therefore, any pair of physical addresses that only differ in the
ghost bit aliases to the same storage location on the module.
This allows an attacker to modify critical data, oblivious to the
OS and the CPU. While BadRAM presents itself as an attack
primitive, we use physical memory aliasing for a benign use
case. Henceforth, we will call the area where the ghost bit is
set the aliased memory area, and the area where the ghost bit
is unset the non-aliased memory area.

3 Threat Model

The techniques we propose protect industrial assembly-line
software from attackers seeking to steal Intellectual Property
(IP), including its binary code and information about its run-
time behavior. This software is tightly coupled with specific
hardware to form a functional machine. Vendors compile and
ship the software-hardware pair to clients themselves, thus en-
abling them to use hardware-specific protection mechanisms
if necessary.

We assume the attacker’s goal is to produce functional
machine clones. To do so, they may reverse-engineer the
software, deploy unauthorized copies on cloned hardware,
analyze run-time behavior, or tamper with the software. We
assume attackers have access to exact hardware clones and
that the victim software is free of vulnerabilities.

The hardware consists of a general-purpose computing
stack with at least a multicore CPU, main memory, and per-
sistent storage. The CPU must use a Harvard architecture
in its L1 cache with separate instruction and data caches,
where the instruction cache is not part of the cache coherence
protocol. The system does not contain any trusted comput-
ing components (e.g., Trusted Platform Modules (TPM) and
Trusted Execution Environments (TEE)) to support software
protection mechanisms. Physical memory aliasing (e.g., via
BadRAM) must be feasible. We consider two adversarial
scenarios where cache requirements may vary.

Scenario 1: On-site deployment Here, the victim software
runs on-site at a legitimate manufacturing facility. Attackers

may gain physical or remote access with full user-space privi-
leges (including root), but they cannot reboot the machine or
modify the kernel, as such events are easily detectable. The
system runs a trusted Linux kernel that enforces kernel mod-
ule signing through the CONFIG_MODULE_SIG_FORCE build
parameter or the module.sig_enforce=1 command-line pa-
rameter. Consequently, the root user cannot load arbitrary
modules into the kernel. With physical access, attackers can
inspect the hardware. They can also swap out hot-pluggable
hardware, such as storage devices and peripherals, but cannot
change the CPU or main memory, since this would require
a reboot. These capabilities empower the attacker to extract
the software binaries and analyze or manipulate running pro-
cesses.

Scenario 2: Attacker-owned system Here, attackers ac-
quire a legitimate hardware-software pair, gaining full system
access, including to the kernel and the main memory. We do,
however, assume that the CPU has been physically tamper-
proofed so that it cannot be modified to allow for direct inspec-
tion of the L1 instruction cache contents. In this scenario, the
attacker can monitor and manipulate kernel-level operations.

4 Design & Protection

We propose BROL, an approach that protects software against
malicious reverse engineering, tampering, and unauthorized
copying. BROL leverages (i) the unique properties of CPU
instruction caches to store protected code safely at run time,
and (ii) physical memory aliasing to invalidate code stored in
memory while leaving its cached version intact.

In this section, we first explain BROL’s base operations,
along with the protections it provides in adversarial scenario
1. Afterward, we describe an extension to BROL that addition-
ally protects the protected software in adversarial scenario 2.
Table 1 summarizes all discussed protections against attackers
in both adversarial scenarios.

Attacker’s Capabilities BROL Countermeasures
Static Image:
analyze, deploy

The binary is encrypted
with a PUF-derived key.

Memory Image:
analyze, dump, tamper

The protected code is
erased from memory.

Caches:
read, write-back, tamper,
cache-to-cache transfer

The protected code is
evicted from data and
unified caches.

Table 1: Summarizing table showing all targets containing the
protected code and how BROL defends them. The gray row
represent attacks that are only possible in adversarial scenario
2.

3

L3

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Cache Loading2

L2

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

L1i

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

CPU Core

L1d

PUF
Decryption

1
0x1000

0x2000

Instr 3

Instr 4

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

Physical
Memory

...

...

(a) BROL decrypts and loads the protected code in memory 1 . After-
ward, it loads the code in the cache hierarchy by running it on dummy
data 2 .

L3

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

L2

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

L1i

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

CPU Core

L1d

Physical
Memory

...
0000

0000

0000

0000

0000

...

0000

0000

Non-Aliased Area
Aliased Area

0000

0000

Erase
Code

Run4

3

...

0000

...

Same
Storage
Location

0x1000

0x2000

Ghost Bit

0x1001000

0x1002000

(b) BROL erases the memory representation of the code through phys-
ical memory aliasing 3 . The caches remain intact. Afterward, the
protected code runs from the caches 4 .

Figure 1: Overview of BROL.

4.1 Base Operations

BROL uses a preloader that sets up the environment for the
protected software. This preloader operates in multiple stages,
as shown in Figure 1. Here, we explain each step along with
its protective purpose. We discuss measures to reduce inter-
ferences in Section 5.

In the first stage, BROL loads the protected software into
memory 1 . The software’s binary image is preinstalled on
disk in encrypted form to prevent static analysis. We use a
PUF-derived encryption key to bind the shipped software
image to its associated hardware securely. This prevents unau-
thorized deployments of copied images on cloned hardware.
On the associated machine, the preloader decrypts the image
and loads the plain code into memory.

The plain-memory representation of the protected code is
a prime target for attackers because a copy of this decrypted
representation can be deployed on cloned hardware. BROL’s
next step is to erase this memory representation. The preloader
runs the protected code from memory on dummy data to load
it into the CPU’s caches 2 . The code is now present in the
L1 instruction cache and, depending on the cache architecture,
possibly in other unified cache levels. Any later execution of
the protected code will be served from these caches, rendering
the memory representation redundant.

BROL then uses physical memory aliasing to erase the code
in memory while keeping the cached version intact 3 . By
overwriting the code in memory using an aliasing physical
address, both the OS and CPU are unaware that the protected
code in the caches becomes stale, so they will not instigate any
cache coherence operations. At this stage, only the internal
CPU caches hold the valid protected code. After preloading

is finished, the software can run from the caches on its real-
world input data 4 .

Having the correct PUF responses and having physical
memory aliasing enabled are both crucial to BROL’s correct-
ness and security guarantees. On a machine with incorrect
PUF responses, BROL would decrypt the software into in-
correct and, likely, invalid code. With the expected PUF re-
sponses, but without aliasing, BROL would correctly decrypt
the binary code but not erase its representation in memory, as
explained in Section 7. To combat this threat, BROL uses a
physical memory PUF (i.e., a DRAM PUF), which it queries
in part through the aliased area of the physical memory space.
If an attacker disables aliasing, these queries will either crash
because BROL reads from invalid memory addresses, or gener-
ate incorrect responses if the attacker has replaced the aliased
area with additional physical memory.

4.2 Protections: Static Image and Memory
With the design we described so far, attackers in both ad-
versarial scenarios cannot deploy copies of the static binary
image of the protected software on hardware clones due to
the PUF-based encryption. The design also prevents them
from performing static analysis on these images for the same
reason. Tampering with the code in memory or creating a
software image from it is, furthermore, not possible due to
the erased code in memory.

However, attackers can try to perform dynamic analysis on
the associated hardware, after BROL has loaded the code into
the cache. Their options include dynamic binary analysis tools
(debuggers, tracers, and processor tracers like Intel PT) and
dynamic binary translation or instrumentation frameworks

4

(e.g., Valgrind, Intel PIN) to add instrumentation code or mon-
itor features such as execution traces, data dependencies, etc.
Fortunately, all aforementioned tools and frameworks require
at least a correct memory representation of the code, either as
the input for analysis or, in the case of Intel PT, to map cap-
tured instruction pointers to their corresponding code [1, 9].
This intact memory representation is absent after preloading
completes, rendering all the aforementioned dynamic analy-
ses insufficient for extracting implementation details from the
protected software.

Without a code image, an attacker can still use a processor
tracing mechanism, such as Intel PT, to observe the length
of each executed instruction and reconstruct the program’s
control-flow structure, including branch targets, loops, and
function calls. However, in the general case, we argue that
to understand the actual operations performed by a code se-
quence, our adversary additionally requires knowledge of
the instruction semantics and the data flow through the code
sequence, particularly the dependencies between operands.
The attacker can obtain this information only by mapping
the captured instruction pointers back to the instructions of
a code image, which is absent in BROL [1, 9]. Other CPU-
based tracing features, such as performance counters, provide
an attacker insight into the instruction types of a code se-
quence (e.g., conditional or unconditional branch, arithmetic,
vector, or memory instructions), along with their microarchi-
tectural events such as mispredictions, elapsed clock cycles,
pipeline clears, etc. The attacker can obtain similar informa-
tion through CPU side channels based on port contention,
branch prediction analysis, etc. [17, 55]. However, for the
same reasons stated above, we believe this information is in-
sufficient for an adversary to reverse engineer the protected
program fully.

4.3 Protections: Caches

With these techniques neutralized, the attacker might instead
focus on the protected code inside the caches. They can read
the code from the cache using load instructions, tamper with
it using store instructions, or write it back to main memory
by evicting it while in a modified state.

Reading the protected code or tampering with it while it
is loaded in the caches requires the attacker to issue memory
requests that map to the cache lines containing the protected
code. The kernel in adversarial scenario 1 is trusted and the
protected software does not contain vulnerabilities, so the
attacker cannot make these memory requests from within the
protected process context. To issue them from another context
on systems with VIPT cache levels, the attacker needs access
to a mapping with the same virtual and physical address pair
as the protected code in the protected process. On a PIPT
system, they only need a mapping with the same physical
address. However, since the kernel is trusted, the attacker can-
not alter page tables directly, and therefore cannot map any

physical page of the protected process into their own attacker
process. They could, however, access the protected process’
virtual address space using APIs such as ptrace. When run-
ning a trusted kernel, we can easily block ptrace attachment
using PT_DENY_ATTACH. The aforementioned restrictions and
techniques defeat an attacker in adversarial scenario 1.

In adversarial scenario 2, the attacker can compromise or
replace the kernel to bypass the restrictions mentioned above.
They have complete control over the protected process’s page
tables and address space. They can also run arbitrary code in
the context of the protected process, for example, by adding
new code pages and overwriting the instruction pointer. The
attacker needs to mark those new code pages as uncachable to
prevent the new code from evicting some of the protected code
lines preloaded in the caches. This allows our attacker to per-
form read and write operations on physical memory assigned
to the protected process, thus allowing them to access the
protected process’ cache. Alternatively, on a PIPT system, the
attacker can also gain access to the protected process’ caches
by mapping the protected process’s physical page frames into
the virtual address space of a malicious process. On a VIPT
system, they additionally have to map these page frames at
the same virtual addresses as in the protected process so they
can access the caches through the same virtual and physical
address pair.

However, even with these additional capabilities, extracting
code from the cache may be subject to non-trivial limitations.
We describe the limitations of all feasible extraction mecha-
nisms below.

Read The attacker could simply inject code into the protected
process to read the protected code from the caches using
standard load instructions. Since load instructions are
data operations, the CPU serves them from the data or
unified caches, i.e., L1d, L2, and L3. Thus, code stored
in these caches can be readily extracted. If the code is
only present in L1i, however, this mechanism will fail.

Cache-to-Cache Transfer Similarly, the attacker could is-
sue the same load operations from another process run-
ning on another CPU core. The protected process’ core
will transfer the requested data to the attacker’s core. The
snoop control unit, however, only tracks data in the data
and unified caches [3, 5, 8, 9, 10, 11]. Therefore, this
mechanism only works if the code is present in L1d or
higher-level caches. If the protected code is only present
in the instruction cache, this technique fails because the
attacker’s core will fetch a fresh copy of the data from
memory and store it in its local caches.

Write-back The CPU writes a modified cache line back to
memory when it is evicted due to a collision or explicit
flush operation (e.g., on x86, with clflush or clwb from
user space, or wbinvd from kernel space). For efficiency,
unmodified cache lines are simply evicted without writ-
ing them back to memory. Hence, to write back protected

5

code, attackers must first bring the corresponding cache
line into a modified state. They can easily do this without
overwriting the contents of the cache line, for example
by executing an and 0xff instruction on a single byte
of code. A subsequent flush instruction of the cache line
should now replace the erased code in memory with the
valid protected code from cache.

Intel CPUs, however, detect these modifications to
cached code and will first invalidate the corresponding
lines from all caches before making the modification
on a fresh data fetch from memory [9]. This effectively
neutralizes the attack because BROL invalidated the in-
memory version of the code in Step 3 (Section 4).
ARM CPUs, on the other hand, perform the modifica-
tion on code cached in the data and unified caches while
keeping the unmodified code version in its instruction
caches until the software explicitly flushes it [5, 10].
Therefore, this attack only applies to the code currently
cached in the data and unified caches.

All mechanisms described above fail if the code we wish
to protect is not present in the data or unified caches (i.e.,
L1d, L2, and L3). We therefore designed BROL to evict code
from these caches, leaving the only functional copy in the
L1i cache. On systems with multiple cache levels, this is a
critical step to guarantee BROL’s effectiveness in adversarial
scenario 2. As illustrated in Figure 2, we use a pattern of
data-read operations on junk data that is mapped onto the
same cache sets as our protected code 3.5 . After eviction,
the CPU executes the protected code directly from the L1i
cache 4 . BROL’s eviction mechanism works on systems in
which all cache levels are non-inclusive or exclusive of L1i,
as in modern Intel CPUs [70]. In Section 6, however, we show
that it is not trivial to perform these targeted evictions from
the unified and data caches on these CPUs. Some systems
using low-end ARM Cortex A and M CPUs have only one
cache level or can be configured to use only one active cache
level with a separate data and instruction cache [2, 3, 6, 16].
On these systems, eviction is not necessary at all since the
preloading step (2 and 3 in Figure 1) suffices to reach the
desired state where only L1i holds the protected code.

The aforementioned restrictions and techniques protect the
code even in the absence of a trusted kernel. This defeats an
attacker in adversarial scenario 2.

5 Implementation

We implemented two prototypes of BROL, one for x86 and one
for ARMv7 1. For both prototypes, we implemented a user-
space preloader that loads the protected code into the caches
as described in Section 4, and a kernel module that grants us
fine-grained control over the CPU and physical memory.

1BROL’s source code is available at: https://github.com/COMET-
DEPS/BROL-cache-only-execution

Physical
Memory

...
Junk 1

Junk 2

Junk 3

Junk 4

Junk 5

Junk 6

Junk 8

Junk 9

Junk 10

...

Junk 7

0x9000

0xa000

0xb000

CPU Core

Junk 1

Junk 2

Junk 3

Junk 4

Junk 5

Junk 6

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Junk 1

Junk 2

Junk 3

Junk 4

Junk 5

Junk 6

Junk 7

Junk 8

Junk 1

Junk 2

Junk 3

Junk 4

Junk 5

Junk 6

Junk 7

Junk 8

Junk 9

Junk 10

L3 L2 L1d L1i

Data & Unified
Cache Eviction

3.5

Run4

Figure 2: BROL evicts the data and unified caches by loading
junk data 3.5 . The protected code in the instruction cache
stays intact on systems with a non-inclusive or exclusive cache
hierarchy. Afterward, the protected code runs from the instruc-
tion cache alone 4 .

Both implementations use physical memory aliasing to
erase the protected code from RAM while leaving it in the
cache. Our x86 prototype uses the BadRAM method that en-
ables physical memory aliasing by reprogramming the SPD
chips of the memory modules [22]. At boot time, the BIOS
initializes the memory controller using the configuration in-
formation stored in these chips. Our ARMv7 system does
not use an SPD chip to store the memory configuration, so
we implemented physical memory aliasing by changing the
BIOS itself to initialize the memory controller with a larger
memory area. SPD-less memory is common in embedded
systems.

To avoid the system from using memory in the aliasing
region, we use the memmap kernel command-line parameter to
reserve this region on x86 machines. On ARMv7, we marked
the aliasing region as reserved in the flattened device tree.
In both cases, the kernel will not assign memory from this
region to any user-space process, nor allocate it for itself. The
kernel is still aware of this region, allowing us to make on-
demand allocation requests for it through our kernel module.
While bringing the system into a cache-incoherent state, we
mark allocations in the aliasing region as uncached, so any
alteration goes directly to memory instead of to the caches
first.

Right before loading the protected code into cache, BROL
flushes all caches on the system. This allows us to utilize
every cache way of a set because the replacement policy will
always select an unused cache way, i.e., in an invalid MESI
state, when bringing new data into a cache set [15].

One major practicality challenge for BROL is to keep

6

https://github.com/COMET-DEPS/BROL-cache-only-execution
https://github.com/COMET-DEPS/BROL-cache-only-execution

preloaded protected code intact while it resides in the caches.
If the CPU evicts any cache line holding protected code, it
will refetch the erased representation from memory when that
code is due, resulting in unexpected behavior. To avoid these
unwanted evictions, we prevent the caches from being used
by non-BROL code, e.g., from other user-space processes or
kernel threads. We accomplish this by isolating one CPU core,
i.e., the protected core, and only use it to run the protected
code. BROL does not run any of its own code on this core,
except when it preloads the protected code (2 and 4 in
Figure 1). Using the appropriate kernel command-line argu-
ments, we also isolate the core from the process scheduler,
kernel threads, interrupt handlers, and RCU callbacks. This
measure prevents any other user-space or kernel code to ever
run on the core we assigned to the protected code.

Our prototypes fully implement the cache preloading and
eviction protection described in Section 4. However, we did
not implement the proposed PUF-based decryption. We be-
lieve this is a fair omission because (i) our focus in this pa-
per is the cache-only execution mechanism, (ii) PUF-based
encryption is a well-established technique that is not fun-
damentally difficult to implement [40, 43, 53, 58, 60, 69],
(iii) its absence does not affect our evaluation or conclusions,
and (iv) DRAM PUFs pair very well with our design and
are compatible with our design goals (inexpensive and uni-
versally available). We elaborate on the potential use of a
Rowhammer-based DRAM PUF in Section 7.4.

6 Evaluation

The biggest challenge to the practicality of BROL is to keep
the protected code in the caches throughout the execution of
the protected program. If the CPU evicts any cache line con-
taining protected code, it re-fetches erased code from memory
upon execution, leading to unexpected behavior. We evalu-
ated the real-world feasibility of BROL by investigating the
extent to which the CPU inadvertently evicts the protected
code from the cache.

In our experiments, we preloaded the protected code into
the caches and erased it from memory as described in Sec-
tion 4. We gradually increased the complexity of the protected
code to study the effect of complex control flow on cache evic-
tions. We initially do not evict the protected code from the
data and unified caches (3.5 in Figure 2).

Experimental Setup Our first test system contains an x86-
based Intel Core i7-13700K CPU with 8 GiB of non-aliased
physical memory and runs Fedora 41 with Linux kernel ver-
sion 6.12. We implemented physical memory aliasing on the
memory DIMM itself using the BadRAM method. At boot
time, the system reports 16 GiB of physical memory to the
OS. We used the caches of one P-core to preload the protected
code into and disabled hyperthreading to prevent these caches

from being shared with another logical core. Additionally, we
disabled all prefetchers on this core to reduce background
cache activity. This CPU has a core-private L2 (2 MiB per
core) and a shared L3 (30 MiB) cache, which are both non-
inclusive of the core-private L1i (32 KiB per core) and L1d
(48 KiB per core) caches. This should, theoretically, allow
us to evict the cache lines containing protected code from
the unified L2 and L3 caches while keeping them in the L1i
cache. This system uses 64-byte cache lines in all its cache
levels.

Our second test system is a Banana Pi M2 Ultra. This
single-board computer contains an Allwinner A40i SoC with
four ARM Cortex A7 CPUs implementing the 32-bit ARMv7
architecture with support for the Large Physical Address Ex-
tension (LPAE) [3, 7]. It contains 2 GiB of non-aliased physi-
cal memory and it runs Armbian Community 25.11. The CPU
implements a shared L2 (512 KiB) cache and a core-private
L1i (32 KiB per core) and L1d (32 KiB per core) cache. This
system uses 64-byte cache lines in all its cache levels, except
for L1i, where it uses 32-byte cache lines. The inclusion pol-
icy of these caches is undocumented. The CPU allows the
kernel to disable its data and unified caches, i.e., L1d and L2,
while keeping L1i up. The system uses a u-boot bootloader,
which also fulfills the role of BIOS. We implemented physical
memory aliasing by modifying u-boot to initialize the mem-
ory controller with an extra row bit. The booted system now
reports 4 GiB of physical memory. Because, in addition to
physical memory, memory-mapped I/O also requires physical
addresses, the physical address range cannot be represented
with 32-bit pointers anymore. We therefore use a plain Debian
Linux kernel version 6.12 with LPAE support.

Experiment 1 The goal of our first experiment on x86 was
to find out how much code we could run from the caches
without triggering unwanted evictions. We preloaded a re-
gion containing straight-line code into the caches and, sub-
sequently, overwrote it in memory with different code. As
shown in Listing 1, each cache line starts with one 3-byte INC
RAX instruction, followed by NOP instructions to fill the line.
Henceforth, we reference a whole cache line by the single in-
struction at the start of the line. The code region was allocated
at a cache-line boundary. The data dependencies between the
instructions prevent out-of-order execution and the lack of
control flow changes eliminates the need for speculation. We
ran the code once to preload it in the cache and recorded the
result in RAX for later comparison. Afterward, we overwrote
every INC instruction in the memory version with a 3-byte
DEC RAX instruction through our BadRAM-enabled physical
memory aliases. We ran the code again to check if the result
in RAX matched the recorded result of the preloading round. If
the resulting value was smaller, the difference indicates how
many cache lines were evicted from the cache and replaced
by refetches of the overwritten code in memory. Note that
this number does not show evictions of cache lines containing

7

code that had already been executed.
We increased the region size in steps of 256 cache lines and

ran six iterations for each size. Figure 3 shows the average,
minimum, and maximum number of evicted cache lines for a
variable code region size. We did not encounter any unwanted
evictions for regions smaller than 10,000 cache lines. The
figure shows that the code runs reliably from the caches until
the size reaches 10,000 cache lines (625 KiB). Within 10,000
cache lines (625 KiB) and 32,000 cache lines (2000 KiB), we
encountered unwanted evictions while at least one run finished
without evictions. Starting at 32,000 cache lines (2000 KiB),
we found program sizes that failed in every iteration.

These unwanted evictions may arise from a variety of
sources. Branch mispredictions, for example, might trigger
speculative instruction fetches of uncached code, which in
turn might evict some of the preloaded code from the caches.
External processes could also create interferences but we try
to reduce these to a minimum as discussed in Section 5.

We conclude that, on this particular microarchitecture,
BROL reliably runs a straight-line code region below 10,000
cache lines (625 KiB) without any unwanted evictions, and un-
til 32,000 cache lines (2000 KiB) with at least one successful
run.

cached version
0x1200: inc rax; nops
0x1240: inc rax; nops
0x1280: inc rax; nops
0x12c0: inc rax; nops

memory version
0x1200: dec rax; nops
0x1240: dec rax; nops
0x1280: dec rax; nops
0x12c0: dec rax; nops

Listing 1: The straight-line code used in experiment 1 to
preload the caches (left) and to overwrite memory with (right).
Highlighted lines indicate a difference.

Experiment 2 In the next experiment, we added control-
flow changes to the code setup from experiment 1 by inserting
loops with conditional backward jumps. Listing 2 and List-
ing 3 show our test code using direct and indirect backward
jumps, respectively. Each loop runs five iterations contain-
ing five INC EDX instructions. We varied the size of the code
region by concatenating more loops, each separated by nine
INC EAX instructions. We used a different register to count
the evicted cache lines inside and outside loops because there
might be a difference in the eviction pattern for that exe-
cuted code more frequently. To erase the code in memory,
we changed all INC instructions, both inside and outside the
loops, to DEC instructions.

This pattern defines two data-dependence regions: one com-
prising all instructions inside the loops and the other compris-
ing all instructions outside the loops which, furthermore, form
a straight-line code sequence. Instructions within each region
are data-dependent on one another, but not on instructions
from the other region. This allows the Out-of-Order (OoO)

CPU backend to interleave the code from these regions at run
time.

Figure 4 shows the results for eleven iterations of this code
pattern, both for direct and indirect branches, and for a varying
number of concatenated loops. We found that this pattern runs
reliably until the size reaches 32,002 cache lines (1.95 MiB),
and until 48,002 lines (2.93 MiB) with a least one successful
run. These limits are higher compared to the straight-line code
in experiment 1, likely because of this pattern’s OoO capa-
bilities. If the CPU frontend mispredicts a branch target, the
OoO backend can always continue on the instructions outside
the loops while the mispredicted instructions are cleared. The
replacement policy based on LRU will successively mark in-
structions outside the loops as the next eviction candidate for
a set, because these are least-recently used. The associativity
of the caches on our test CPU lies between 8 and 16. Due
to OoO execution, it is likely that the next 8 to 16 instruc-
tions, i.e., cache lines, outside the loops have already finished
executing.

There is no notable difference when using direct or indirect
jumps, except for the large difference at 40,002 cache lines
which we assume is a transitional phenomenon.

We conclude that this control flow pattern allows BROL to
run larger code regions from cache, likely due to limited OoO
execution between the two code regions.

cached version
0x1180: inc eax; nops
0x11c0: mov rcx, 5; nops
L1:
0x1200: inc edx; nops
0x1240: inc edx; nops
0x1280: inc edx; nops
0x12c0: inc edx; nops
0x1300: inc edx; nops
0x1340: dec rcx;

jnz L1; nops
0x1380: inc eax; nops

memory version
0x1180: dec eax; nops
0x11c0: mov rcx, 5; nops
L1:
0x1200: dec edx; nops
0x1240: dec edx; nops
0x1280: dec edx; nops
0x12c0: dec edx; nops
0x1300: dec edx; nops
0x1340: dec rcx;

jnz L1; nops
0x1380: dec eax; nops

Listing 2: The code with direct conditional backward jumps
used in experiment 2 to preload the caches (left) and to over-
write memory with (right). Highlighted lines indicate a differ-
ence.

Experiment 3 Next, we ran a collection of small real-world
applications with BROL. We chose the Suckless sbase collec-
tion of light-weight Unix tools2. These programs are written
in C and focus on implementation simplicity. They are, fur-
thermore, small in size, making them a good starting point
for validating BROL.

Real applications typically use code from external libraries.
Because caches are small, we only preloaded the internal
code, i.e., the code from the sbase source. However, when the

2https://core.suckless.org/sbase/

8

https://core.suckless.org/sbase/

10,000 CLs
625.0 KiB

15,000 CLs
937.5 KiB

20,000 CLs
1250.0 KiB

25,000 CLs
1562.5 KiB

30,000 CLs
1875.0 KiB

35,000 CLs
2187.5 KiB

40,000 CLs
2500.0 KiB

45,000 CLs
2812.5 KiB

50,000 CLs
3125.0 KiB

Code region size in number of caches lines (CLs) and bytes

100

101

102

103

104

105

Nu
m

be
r o

f e
vi

ct
ed

 c
ac

he
 li

ne
s

Cache Line Eviction of Straight-line Code
Maximum
Average
Minimum

Figure 3: Number of evicted cache lines for a variable code region size containing straight-line code.

1,000 loops
16,002 CLs
0.98 MiB

1,500 loops
24,002 CLs
1.46 MiB

2,000 loops
32,002 CLs
1.95 MiB

2,500 loops
40,002 CLs
2.44 MiB

3,000 loops
48,002 CLs
2.93 MiB

3,500 loops
56,002 CLs
3.42 MiB

4,000 loops
64,002 CLs
3.91 MiB

4,500 loops
72,002 CLs
4.39 MiB

5,000 loops
80,002 CLs
4.88 MiB

5,500 loops
88,002 CLs
5.37 MiB

6,000 loops
96,002 CLs
5.86 MiB

Code region size in number of loops, total cache lines (CLs), and bytes

100

101

102

103

104

105

Nu
m

be
r o

f e
vi

ct
ed

 c
ac

he
 li

ne
s

Cache Line Eviction of Code with Loops
Evictions outside loops with direct jumps
Evictions inside loops with direct jumps
Evictions outside loops with indirect jumps
Evictions inside loops with indirect jumps

Figure 4: Number of evicted cache lines for a code region with a variable number of loops. The error bars represent the minimum
and maximum encountered evictions.

program runs, the external code might interfere and cause un-
wanted evictions of the preloaded code. Therefore, we wrote
an LLVM compiler pass that instruments the code to switch
CPU affinity to another core when calling an external func-
tion. After the function returns, we switch back to the core
with the preloaded code in its caches.

We used Intel PT on our instrumented binaries to find all
internal code locations covered by the program for a given
set of arguments. BROL preloads the internal code in cache
by running it once with the same arguments. Afterward, we
erased the memory version by overwriting the entire code
region with breakpoint interrupt instructions, i.e., INT3. Then
we reran the code with the same arguments while recording
whether the program encounters an interrupt instruction.

We ran 50 iterations of each selected program and report
their success rate in Table 2, along with the size of the code re-
gion covered. We only count a run as successful if it finishes
with a zero exit value, without hitting an INT3 instruction.

The results show that all tested programs have at least one
successful run from the cached code. For larger programs,
only a portion of the executions were successful because the
CPU evicted at least one cache line containing code that was
still required. Programs with a covered code size below 1 KiB
finished successfully in all iterations. This result is multiple
orders of magnitude smaller compared to the results in exper-
iment 1 and 2. We explain this using the added complexity of
real-world programs. Various microarchitectural mechanisms,
such as out-of-order execution with complex data dependen-
cies, branch prediction, and speculative execution, increase
cache traffic which interferes with BROL’s preloaded code.

To get more insight into the failed runs, we ran the program
while monitoring performance counters. We cannot use any
conventional program analysis tool as BROL renders them
ineffective. Using the INST_RETIRED.ANY counter, we can
estimate at which point the program crashed. We found that
in nearly every case when a program crashed, it did so while

9

cached version
0x1180: inc eax; nops
0x11c0: mov rcx, 5;

lea r11, [rip]; nops
0x1200: inc edx; nops
0x1240: inc edx; nops
0x1280: inc edx; nops
0x12c0: inc edx; nops
0x1300: inc edx; nops
0x1340: dec rcx;

jz L2; jmp r11; nops
L2:
0x1380: inc eax; nops

memory version
0x1180: dec eax; nops
0x11c0: mov rcx, 5;

lea r11, [rip]; nops
0x1200: dec edx; nops
0x1240: dec edx; nops
0x1280: dec edx; nops
0x12c0: dec edx; nops
0x1300: dec edx; nops
0x1340: dec rcx;

jz L2; jmp r11; nops
L2:
0x1380: dec eax; nops

Listing 3: The code with indirect conditional backward jumps
used in experiment 2 to preload the caches (left) and to over-
write memory with (right). Highlighted lines indicate a differ-
ence.

Program Invocation Covered
Code Size

Success
Rate

hostname 0.32 KiB 100%
dirname ./dirname.c 0.32 KiB 100%
echo 50377189 0.42 KiB 100%
pwd 0.53 KiB 100%
head ./sbase/head.c 0.82 KiB 100%
seq 0 10 1.13 KiB 86%
uuencode ./wc.c base64 1.19 KiB 48%
sha256sum ./sha256sum.c 1.48 KiB 82%
wc ./wc.c 1.67 KiB 50%
strings ./strings.c 1.91 KiB 58%
ls -lah 3.44 KiB 48%
expand ./expand.c 1.66 KiB 24%
sort ./sort.c 2.12 KiB 34%

Table 2: The success rate when running a set of sbase pro-
grams with BROL.

executing the first few assembly instructions, suggesting that
the unwanted evictions occur during the preloading run of
the code (2 in Figure 1). We recorded other performance
counters during the preloading run and watched for sporadic
events that might explain occasional unwanted evictions.
Concretely, we monitored the following performance
events across 50 runs while taking counter multiplexing
into account: BR_INST_RETIRED.{ALL_BRANCHES,COND},
BR_MISP_RETIRED.{ALL_BRANCHES,COND,INDIRECT,RET},
BACLEARS.ANY, OFFCORE_REQUESTS.DEMAND_CODE_RD,
MACHINE_CLEARS.COUNT, MACHINE_CLEARS.SMC,
FRONTEND_RETIRED.ITLB_MISS, L2_LINES_OUT.SILENT,
L2_LINES_OUT.USELESS_HWPF, L2_RQSTS.ALL_CODE_RD,
L2_RQSTS.CODE_RD_HIT, L2_RQSTS.CODE_RD_MISS. We
found that none of these counters exhibited irregular-
ities that consistently led to failure when the binary

was subsequently run from the cache (4 in Figure 1).
However, we did notice that the L2_LINES_OUT.SILENT,
L2_RQSTS.ALL_CODE_RD, L2_RQSTS.CODE_RD_HIT,
BR_MISP_RETIRED.{ALL_BRANCHES,COND}, and
BACLEARS.ANY counters showed large fluctuations across
all preloading runs, suggesting that the internal CPU state
varies substantially across runs. This might explain the
non-deterministic nature of the larger programs under BROL.

Adversarial Scenario 2 To test BROL’s reliability in adver-
sarial scenario 2, we need to evict the protected code from
the data and unified caches, i.e., L1d, L2, and L3 on x86. The
protected code is never present in L1d, leaving only L2 and
L3. To guarantee protection with BROL, we need to evict ev-
ery protected code line with certainty from the unified caches,
which is challenging due to the following reasons.

• Earlier work on microarchitectural attacks constructs
eviction sets consisting of N congruent addresses, i.e.,
addresses with the same set-selection bits [45, 67]. The
challenges lie in knowing which addresses are congruent
and how big N should be. Finding congruent addresses
is only challenging when the set-selection strategy is
unknown, for example, in LLC slicing on Intel CPUs.
Most works use an N around the associativity of the
targeted cache level [45, 65].

• Intel does not disclose the details of its replacement pol-
icy. Furthermore, they only disclosed that the caches
in our system are non-inclusive of their lower-levels,
but did not provide additional details. We therefore do
not know into which cache level(s) the data is initially
fetched, and whether the data moves to higher or lower-
level caches upon eviction from a certain cache level.
Yan et al. reverse engineered the cache hierarchy in the
Skylake-X architecture [70]. They showed the existence
of a Traditional Directory and an Extended Directory,
which orchestrates the movement of cache lines through
cache levels. The L2 cache in their cache hierarchy, how-
ever, is inclusive of the L1 cache, while our system’s L2
is non-inclusive of L1, indicating a different directory
structure.

We leave it as an open problem to determine whether there
is a precise and universal strategy to evict unified caches on
x86 while keeping the instruction cache intact. Such a strat-
egy has to respond effectively to all subtleties of the targeted
CPU’s replacement and inclusion policy. On architectures
where it is impossible to evict the protected code from the uni-
fied caches, BROL is unable to protect the code in adversarial
scenario 2.

We instead evaluated BROL’s effectiveness in adversarial
scenario 2 on an ARMv7 system with only one active cache
level. The Cortex-A7 CPU on our Banana Pi has two cache
levels but allows the kernel to disable L2 together with L1d.

10

This effectively leaves us with a system with only an instruc-
tion cache and no data caches. We ported BROL to ARMv7
only to discover that the Linux kernel re-enables the L1d and
L2 caches at regular intervals. We were, therefore, unable to
evaluate BROL in its highest protective mode, i.e., when the
protected code is not present in any data or unified cache. It is
noteworthy that many Cortex-M CPUs have only one cache
level, with separate L1i and L1d caches; for example, the
Cortex-M7 [16]. On these systems, BROL can run naturally
in its highest protective mode without evicting the protected
code from unified caches.

Conclusion We conclude that BROL can reliably execute
real-world programs of medium complexity with at most
1 KiB of executed code. BROL supports larger programs if the
code complexity is low, i.e., code containing tight loops and a
large portion is data-dependencent straight-line code, and in
environments where only one successful execution is required
among multiple invocations. The precise limit on code sizes
depends heavily on the internal structure of the program and
will require custom empirical evaluation. BROL can protect
code in adversarial scnerario 1 and 2 on systems with only one
cache level. On systems with multiple cache levels, BROL can,
at present, only guaranty protection for adversarial scenario 1
due to our inability to precisely evict the protected code from
the unified caches, while keeping it cached in the instruction
cache.

7 Discussion

BROL’s biggest threat to validity is the unwanted evictions
of the preloaded protected code. As we demonstrated, the
risk is especially high when only using one cache level, as
required for adversarial scenario 2. In adversarial scenario 1,
on the other hand, BROL can rely on multiple cache levels to
store the protected code, and, therefore, tolerates an unwanted
eviction from one level if the code is still present in another
level.

7.1 Preloader Vulnerabilities
As discussed in Section 4, BROL provides strong protection
for the program after the cache preloader completes its work.
However, our approach leaves the preloading procedure itself
vulnerable to attacks. The attacker has sufficient capabilities
in both adversarial scenarios to pause the preloader process
and inspect its memory. Below, we describe how the attacker
can tamper with the preloading procedure shown in Figure 1
to circumvent BROL’s protections.

• While decrypting the binary image in step 1 , the
preloader should query the PUF for the decryption key.
In both adversarial scenarios, the attacker can intervene
in this process to intercept the decryption key. With this

key, the attacker can decrypt the static image and access
the plain protected code.

• BROL requires memory with physical memory aliasing.
It enforces this property by incorporating the effects of
memory aliasing in the PUF queries and responses, and,
thus, in the derived decryption key. However, in adversar-
ial scenario 2, an attacker could mimic physical memory
aliasing by introducing software-controlled aliasing in
the memory management unit. The attacker can then
enable aliasing while deriving the decryption key, and
disable it while erasing the protected code from memory
in step 3 .

• The decrypted code is present in memory between steps
1 and 3 . In this time window, the attacker can store

the memory to disk to extract the decrypted protected
code.

• Likewise, the protected code is present in the data and
unified caches between step 2 and 3.5 , during which
the attacker in adversarial scenario 2 can read the pro-
tected code from those caches.

• The attacker could manipulate the preloader process to
skip the erase step 3 . This effectively disables BROL
and allows the attacker to perform any reverse engineer-
ing technique at any time on the memory representation
of the protected code.

• Likewise, the attacker could skip step 3.5 to keep the
protected code in the data and unified caches, allowing
them to read it at any time.

These attacks are only conceivable during preloading. How-
ever, preloading only runs once and takes very little time.
Therefore, BROL reduces the attack surface to a limited time
window rather than the full run time of the protected software.

We can protect the preloader using existing anti-tamper
mechanisms that provide strong protection guarantees. Be-
cause the preloader only runs once for a limited time, we
argue that it is acceptable that these measures have a high
overhead. Dynamic Root of Trust for Measurement (DRTM),
for example, is a mechanism that provides run-time launch
integrity independent of the level of trust in the currently
running software stack. It uses a secure launch program that
takes control over all CPUs while it validates the environ-
ment [48]. This program starts the chain of trust and is itself
integrity-protected by a measurement stored in a TPM. This
technique is implemented in Windows as System Guard Se-
cure Launch [25, 48]. TrenchBoot is an open-source imple-
mentation for Linux3. On its own, DRTM is insufficient to
prevent piracy and reverse engineering, as attackers can still
use memory analysis tools to read the protected code from

3https://trenchboot.org/

11

https://trenchboot.org/

memory. It could, however, complement BROL and protect the
preloader. As discussed in Section 3, the systems BROL targets
do not contain specialized hardware such as TPMs, which
are essential to existing DRTM implementations. BROL does,
however, rely on a memory PUF, which could function as a
hardware root of trust for a secure launch program similar to
that of DRTM. In this case, we can protect code against piracy
and reverse engineering with BROL while integrity-protecting
BROL’s preloader with a PUF variant of DRTM.

7.2 Microarchitectural Attacks

Cache-timing side channels like Flush+Reload and
Prime+Probe leak the access pattern made by the protected
process into a targeted memory region [45, 71]. They con-
struct an initial cache setup where no data from the targeted
region is cached. After the protected process completes its
operations, the attacker performs multiple data accesses to
either the shared data or to data residing in the same cache set.
An attacker can determine which data the protected process
used and refetched from memory based on the access times.
In SMaCk, the authors increase the timing resolution using
self-modifying code conflicts in L1i [59]. These side-channel
attacks use frequent refetches of the targeted data from
memory and, therefore, require that this data resides in
memory. The access pattern into BROL-protected code cannot
be analyzed using these cache-timing side channels because
the targeted data, i.e., the protected code, is not resident in
memory.

Speculative execution attacks like Spectre and Meltdown
leverage these cache-timing side channels to leak secret
data [39, 44]. They do not, however, use these side chan-
nels directly on the secret data. Instead, they leverage code
gadgets in which a probe array gets indexed by the secret
data. To launch the attack, they trigger the CPU to specula-
tively perform this indexing operation, after which they can
derive the accessed indices, i.e., the secrets, by leaking the
access pattern into the probe array. These attacks cannot leak
BROL-protected code, as code is generally not used to index
into data structures. One exception to this rule is when the
protected code modifies itself. BROL, however, cannot support
self-modifying code by design, as discussed in Section 4.

Microarchitectural Data Sampling (MDS) attacks, such as
RIDL, Fallout, Zombieload, and CacheOut, can leak secret
data while it is in transit through microarchitectural buffers
within the CPU [19, 57, 64, 65]. RIDL, Zombieload, and
CacheOut target the line-fill buffer between L1d and L2, while
Fallout targets the store buffer. Code protected with BROL,
however, does not move through this particular line-fill buffer
because it does not flow to the L1d cache. Similarly, BROL-
protected code cannot modify itself, nor get modified by an
attacker, so it will never transit through the store buffer. It is,
however, unknown whether CPUs implement similar vulnera-
ble line-fill buffers along the instruction fetch path.

7.3 Practicality

The size of the protected software could exceed the cache
size. If that happens, BROL can only protect a vendor-selected
portion of the protected software that fits in the cache levels
used by BROL. This is particularly limiting in adversarial
scenario 2, where BROL only uses the L1i cache. Instruction
cache sizes are typically in the order of kilobytes on modern
high- and middle-end CPUs. Intel and ARM CPUs have at
least 32 KiB instruction cache since the launch of the Core
line in 2006 and the Cortex-A line in 2005, respectively [12,
32].

If the software underutilizes the available CPU cores, BROL
could be modified to leverage those cores and their caches
to protect a larger portion of the protected software. Alterna-
tively, if the portion exceeds the size of the available caches,
we could modify BROL so it dynamically reload parts of the
protected software on demand. BROL could accomplish this
by running the preloading procedure, as described in Sec-
tion 4, multiple times on different small chunks that fit in the
available caches. However, this increases the attack surface as
the preloader now runs for a longer time. To reduce the num-
ber of required reloads, a custom compiler could lay out the
code to maximize code locality, optionally aided by profiling
information.

When using multiple preload iterations, BROL could protect
itself, as it does for the software. By preloading the preloader
code in a cache, it is protected against all attacks mentioned
in Section 4, therefore, keeping the attack surface limited to
the initial start-up. Due to cache size constraints, this method
likely requires the caches of at least a second CPU core.

7.4 Rowhammer

The main idea in this work is to bring the system into an
incoherent state where only the instruction cache holds the
protected code. BROL uses physical memory aliasing to erase
the protected code from memory while preventing the CPU’s
coherence mechanism from updating the caches. We could
also reach the desired incoherence by modifying the pro-
tected code directly inside the memory module itself, for
example, by using Rowhammer [38]. Rowhammer is a dis-
turbance error in DRAM modules that allows us to flip stor-
age bits in the memory module by rapidly accessing specific
patterns of DRAM rows at high frequency. This increases
charge leakage in neighboring cells until the stored logical
bit flips. Rowhammer affects most commodity DDR3 and
DDR4 DRAM chips [33, 37, 52], including high-end ECC
RAM [20], and some DDR5 RAM [34]. The induced bit flips
are, furthermore, oblivious to the OS and CPU. We could
use this primitive to flip a number of bits in the protected
code to erase it from memory without physical memory alias-
ing. However, this approach requires a large number of bit
flips to make the transformation irreversible. As earlier work

12

pointed out, Rowhammer-induced bit flips are only partially
reliable [38, 47, 56]. However, for this use case only the
number of bit flips in each execution matters and not the relia-
bility of individual flips. The set of flippable bits, furthermore,
depends on variances in the manufacturing process of the
DRAM chip. It can, therefore, also double as the PUF used to
encrypt the binary image of the protected code.

8 Related Work

Cache-as-RAM (CAR) is a technique used by bootloaders
to use the CPU’s caches as RAM [46, 50]. This allows boot-
loader developers to write in a higher-level language and,
temporarily, use a stack in the cache until the DRAM con-
troller is initialized. To enable CAR on x86, the bootloader
enables the caches and marks a memory region as write-back,
allowing the CPU to perform all memory operations in that
region on the caches. Because the DRAM controller is inac-
tive, this region is not backed by DRAM, so write-backs or
evictions should be avoided. The bootloader can achieve this
level of stability because there is no interference from other
running code. This approach reaches the level of stability we
want in BROL but without flexibility, i.e., only running one
victim program, no operating system, no DRAM, and all code
and data has to fit in the cache. With BROL, however, we aim
to build a more flexible system that protects the victim code
and, therefore, uses the caches only to store it.

In GlueZilla, Mechelinck et al. use the Rowhammer effect
as a PUF to bind a software instance to an associated hardware
instance [47]. They modify the software to exhibit a prede-
fined unintended behavior and record the changes, i.e., the
junction bits, in the binary code. At run time, they restore the
software’s originally intended behavior by flipping the junc-
tion bits with Rowhammer-induced bit flips. They show that
their approach is practical with acceptable overhead. Their ap-
proach protects against static and dynamic analysis on cloned
hardware, but remains vulnerable to memory attacks on the
associated machine. In contrast, BROL protects the victim
software, even when the attacker has complete control over
the memory on the associated machine.

Dorfmeister et al. use PUFs to bind a software instance
to an associated hardware instance to protect industrial ap-
plications from piracy [23]. They represent a program as an
abstract state machine and define state changes based on the
PUF responses; therefore, they couple the software’s behav-
ior tightly to the PUF. One of their concerns is to guarantee
safety for the machine and the environment when the PUF
returns faulty responses or when an attacker runs a stolen
image on a machine different from the associated one. They
use symbolic execution on the state machine to verify that the
protected version of the program cannot enter unsafe states
in the presence of faulty PUF responses. Dorfmeister et al.
bind intellectual property in the form of neural networks to
the underlying hardware [24]. They link the model’s weights

to the unique and unclonable hardware properties of a PUF,
effectively making the model’s behavior dependent on the
hardware. When an attacker steals the neural network and
runs it on a machine clone, the model uses different weights,
yielding unexpected results. The authors show that by only
binding 10-20% of the weights to the PUF, the accuracy of a
text classifier already reaches that of a random classifier. In
both aforementioned works, an attacker could intercept the
PUF responses on the associated hardware to reconstruct the
intended state changes and model weights.

Instead of protecting the IP in software, Fischer et al. pro-
tect the data used by the software [26]. They represent this
data in binary form and decompose it into a list of boolean
expressions that, if combined correctly, resolve to the correct
value. They then combine the boolean expressions based on
the responses of the PUF, effectively binding the reconstruc-
tion of the data to the machine it runs on. They validate their
approach on a microcontroller board with an SRAM PUF.
In contrast to BROL, this technique protects the data IP and
leaves the software IP vulnerable.

In TLB;DR, Tatar et al. desynchronize the TLB to reverse
engineer its implementation details including its hierarchy
and replacement policy [61]. They note that TLBs do not
enforce coherence with the in-memory page table. Using this
insight, they deliberatly introduce incoherences between TLB
entries and page table entries in memory and record whether
the CPU performs an address translation using the old entry
still in the TLB or using the overwritten entry in memory.
This approach is similar to the deliberate cache incoherences
used by BROL. Future work could reverse engineer the im-
plementation details of the cache replacement policy in a
similar fashion using deliberate incoherences between cache
and memory.

9 Conclusion

We presented BROL, a system that protects software against
piracy and reverse engineering while running on industrial
machines with limited protective resources. BROL provides
strong protection against attacks on site, and on attacker-
owned systems, using only commodity hardware components.
It uses physical memory aliasing to set up an environment in
which the protected code is only available in the CPU caches.
It achieves its strongest protection when using targeted cache
eviction to make the code unavailable in any cache level ex-
cept for the instruction cache. We implemented BROL for x86
and ARMv7 platforms and evaluated its practicality on code
of varying complexity. We show that BROL can reliably pro-
tect real-world applications of limited size without unwanted
evictions. On non-inclusive cache hierarchies, we found that
evicting the unified cache levels while keeping the protected
code in the instruction cache is challenging, therefore locking
the full potential of BROL in adversarial scenario 2.

13

Acknowledgments

We thank the reviewers and our shepherd for their feedback
on improving the paper. The research reported in this paper
has been funded by the Federal Ministry for Innovation, Mo-
bility and Infrastructure (BMIMI), the Federal Ministry for
Economy, Energy and Tourism (BMWET), and the State of
Upper Austria in the frame of the COMET Module Depend-
able Production Environments with Software Security (DEPS)
(FFG grant no. 888338) and the SCCH competence center
INTEGRATE (FFG grant no. 892418) within the COMET -
Competence Centers for Excellent Technologies Programme
managed by Austrian Research Promotion Agency FFG.

References

[1] perf-intel-pt(1) — Linux manual page. URL
https://man7.org/linux/man-pages/man1/perf-
intel-pt.1.html. Accessed: 2025-12-23.

[2] ARM Cortex™-R4 and Cortex-R4F Technical Reference
Manual, April 2011, Revision: r1p4. ARM DDI 0363G
(ID041111).

[3] ARM Cortex™-A7 MPCore™ Technical Reference Man-
ual, April 2013, Revision: r0p5. ARM DDI 0464F
(ID051113).

[4] AMD64 Architecture Programmer’s Manual Volumes
1–5, April 2024, Revision 4.08. Publication No. 40332.

[5] Arm® Architecture Reference Manual for A-profile ar-
chitecture, April 2025. Document number: ARM DDI
0487.

[6] ARM Cortex-A5™ Technical Reference Manual, January
2016, Revision: r0p1. ARM DDI 0433C (ID021016).

[7] Allwinner A40i User Manual, June 2018, Revision 1.1.

[8] Arm® Cortex®-A53 MPCore Processor Technical Ref-
erence Manual, June 2018, Revision: r0p4. DDI 0500J
(ID012219).

[9] Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B,
3C, 3D, and 4, June 2025. Order Number: 325462-
088US.

[10] ARM® Architecture Reference Manual ARMv7-A and
ARMv7-R edition, March 2018. ARM DDI 0406C.d
(ID040418).

[11] Intel® Itanium ® Architecture Software Developer’s
Manual, Volume 1: Application Architecture, May 2010,
Revision 2.3. Document Number: 245317.

[12] ARM Cortex™-A8 Technical Reference Manual, May
2010, Revision: r3p2. ARM DDI 0344K (ID060510).

[13] 11th Generation Intel® Core™ Processor Datasheet,
Volume 1 of 2, Tiger Lake, May 2023, Revision 012.
Document Number: 631121-012.

[14] 12th Generation Intel® Core™ Processors Datasheet,
Volume 1 of 2, Tiger Lake, May 2025, Rev. 011. Doc.
No.: 655258.

[15] ARM1176JZF-S™ Technical Reference Manual,
November 2009, Revision: r0p7. ARM DDI 0301H
(ID012310).

[16] Arm® Cortex®-M7 Processor Technical Reference Man-
ual, November 2018 Revision r1p2. ARM DDI 0489F
(ID121118).

[17] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida García, and Nicola Tuveri. Port
contention for fun and profit. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 870–887, 2019. doi:
10.1109/SP.2019.00066.

[18] Boaz Barak, Oded Goldreich, Rusell Impagliazzo,
Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs. In
CRYPTO, pages 1–18. Springer, 2001.

[19] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data
on meltdown-resistant cpus. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’19, page 769–784, New York,
NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450367479. doi: 10.1145/3319535.3363219.
URL https://doi.org/10.1145/3319535.3363219.

[20] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: On the effec-
tiveness of ECC memory against Rowhammer attacks.
In S&P, 2019.

[21] Christian Collberg, Clark Thomborson, and Douglas
Low. A taxonomy of obfuscating transformations, 1997.

[22] Jesse De Meulemeester, Luca Wilke, David Os-
wald, Thomas Eisenbarth, Ingrid Verbauwhede, and
Jo Van Bulck. BadRAM: Practical memory aliasing
attacks on trusted execution environments. In 46th IEEE
Symposium on Security and Privacy (S&P), May 2025.

[23] Daniel Dorfmeister, Flavio Ferrarotti, Bernhard Fis-
cher, Evelyn Haslinger, Rudolf Ramler, and Markus

14

https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
https://doi.org/10.1145/3319535.3363219

Zimmermann. An approach for safe and secure soft-
ware protection supported by symbolic execution. In
Gabriele Kotsis, A. Min Tjoa, Ismail Khalil, Bernhard
Moser, Atif Mashkoor, Johannes Sametinger, and Maq-
bool Khan, editors, Database and Expert Systems Appli-
cations - DEXA 2023 Workshops, pages 67–78, Cham,
2023. Springer Nature Switzerland. ISBN 978-3-031-
39689-2.

[24] Daniel Dorfmeister, Flavio Ferrarotti, Bernhard Fischer,
Martin Schwandtner, and Hannes Sochor. A puf-based
approach for copy protection of intellectual property in
neural network models. In Peter Bludau, Rudolf Ramler,
Dietmar Winkler, and Johannes Bergsmann, editors, Soft-
ware Quality as a Foundation for Security, pages 153–
169, Cham, 2024. Springer Nature Switzerland. ISBN
978-3-031-56281-5.

[25] Microsoft Enterprise and OS Security. Force
firmware code to be measured and attested by
secure launch on windows 10, 2020. URL
https://www.microsoft.com/en-us/security/
blog/2020/09/01/force-firmware-code-to-be-
measured-and-attested-by-secure-launch-on-
windows-10. Accessed: 2025-01-02.

[26] Bernhard Fischer, Daniel Dorfmeister, Flavio Ferrarotti,
Manuel Penz, Michael Kargl, Martina Zeinzinger, and
Florian Eibensteiner. Software-Hardware Binding for
Protection of Sensitive Data in Embedded Software,
pages 570–577. Association for Computing Machin-
ery, New York, NY, USA, 2025. ISBN 9798400706295.
URL https://doi.org/10.1145/3672608.3707855.

[27] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen,
and Pim Tuyls. Fpga intrinsic pufs and their use for ip
protection. In Pascal Paillier and Ingrid Verbauwhede,
editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2007, pages 63–80, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. ISBN 978-3-540-
74735-2.

[28] Maryam S. Hashemian, Bhanu Singh, Francis Wolff,
Daniel Weyer, Steve Clay, and Christos Papachristou. A
robust authentication methodology using physically un-
clonable functions in dram arrays. In 2015 Design, Au-
tomation Test in Europe Conference Exhibition (DATE),
pages 647–652, 2015. doi: 10.7873/DATE.2015.0308.

[29] Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and
Srinivas Devadas. Physical unclonable functions and
applications: A tutorial. Proceedings of the IEEE, 102
(8), 2014.

[30] Daniel E Holcomb, Wayne P Burleson, Kevin Fu, et al.
Initial sram state as a fingerprint and source of true

random numbers for rfid tags. In Proceedings of the
Conference on RFID Security, volume 7, page 01, 2007.

[31] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu.
Power-up sram state as an identifying fingerprint and
source of true random numbers. IEEE Transactions
on Computers, 58(9):1198–1210, 2009. doi: 10.1109/
TC.2008.212.

[32] Intel. Next leap in microprocessor architec-
ture: Intel® core™ duo processor white paper,
2006. URL https://www.intel.com/pressroom/
kits/centrino/CoreDuoWhitePaper.pdf.

[33] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In S&P, 2022.

[34] Patrick Jattke, Max Wipfli, Flavien Solt, Michele
Marazzi, Matej Bölcskei, and Kaveh Razavi. ZenHam-
mer: Rowhammer attacks on AMD Zen-based platforms.
In USENIX Security, 2024.

[35] Christoph Keller, Frank Gürkaynak, Hubert Kaeslin, and
Norbert Felber. Dynamic memory-based physically un-
clonable function for the generation of unique identifiers
and true random numbers. In 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), pages
2740–2743, 2014. doi: 10.1109/ISCAS.2014.6865740.

[36] Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur
Mutlu. The dram latency puf: Quickly evaluating phys-
ical unclonable functions by exploiting the latency-
reliability tradeoff in modern commodity dram devices.
In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 194–207,
2018. doi: 10.1109/HPCA.2018.00026.

[37] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan
Hassan, et al. Revisiting RowHammer: An experimen-
tal analysis of modern DRAM devices and mitigation
techniques. In ISCA, 2020.

[38] Yoongu Kim et al. Flipping bits in memory without
accessing them: An experimental study of DRAM dis-
turbance errors. ACM SIGARCH Computer Architecture
News, 42(3), 2014.

[39] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[40] Florian Kohnhäuser, André Schaller, and Stefan Katzen-
beisser. PUF-based software protection for low-end
embedded devices. In TRUST, 2015.

15

https://www.microsoft.com/en-us/security/blog/2020/09/01/force-firmware-code-to-be-measured-and-attested-by-secure-launch-on-windows-10
https://www.microsoft.com/en-us/security/blog/2020/09/01/force-firmware-code-to-be-measured-and-attested-by-secure-launch-on-windows-10
https://www.microsoft.com/en-us/security/blog/2020/09/01/force-firmware-code-to-be-measured-and-attested-by-secure-launch-on-windows-10
https://www.microsoft.com/en-us/security/blog/2020/09/01/force-firmware-code-to-be-measured-and-attested-by-secure-launch-on-windows-10
https://doi.org/10.1145/3672608.3707855
https://www.intel.com/pressroom/kits/centrino/CoreDuoWhitePaper.pdf
https://www.intel.com/pressroom/kits/centrino/CoreDuoWhitePaper.pdf

[41] Vincent Lefebvre, Gianni Santinelli, Tilo Müller, and
Johannes Götzfried. Universal trusted execution environ-
ments for securing sdn/nfv operations. In Proceedings
of the 13th International Conference on Availability, Re-
liability and Security, ARES ’18, New York, NY, USA,
2018. Association for Computing Machinery. ISBN
9781450364485. doi: 10.1145/3230833.3233256. URL
https://doi.org/10.1145/3230833.3233256.

[42] Nora Lieberknecht. Application of trusted computing
in automation to prevent product piracy. In Alessandro
Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi, ed-
itors, Trust and Trustworthy Computing, pages 95–108,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-13869-0.

[43] Daihyun Lim, Jae W Lee, Blaise Gassend, G Edward
Suh, Marten Van Dijk, and Srinivas Devadas. Extracting
secret keys from integrated circuits. VLSI, 13(10), 2005.

[44] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[45] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-level cache side-channel attacks are
practical. In 2015 IEEE Symposium on Security and Pri-
vacy, pages 605–622, 2015. doi: 10.1109/SP.2015.43.

[46] Yinghai Lu, Li-Ta Lo, Greg Watson, and Ronald Min-
nich. Car: Using cache as ram in linuxbios.

[47] Ruben Mechelinck, Daniel Dorfmeister, Bernhard Fis-
cher, Stijn Volckaert, and Stefan Brunthaler. Gluezilla:
Efficient and scalable software to hardware binding us-
ing rowhammer. In Federico Maggi, Manuel Egele,
Mathias Payer, and Michele Carminati, editors, Detec-
tion of Intrusions and Malware, and Vulnerability As-
sessment, pages 416–438, Cham, 2024. Springer Nature
Switzerland. ISBN 978-3-031-64171-8.

[48] Microsoft. System guard: How a hardware-based
root of trust helps protect windows, 2025. URL
https://learn.microsoft.com/en-us/windows/
security/hardware-security/how-hardware-
based-root-of-trust-helps-protect-windows.
Accessed: 2025-01-02.

[49] Jasvir Nagra and Christian Collberg. Surreptitious Soft-
ware: Obfuscation, Watermarking, and Tamperproofing
for Software Protection. Pearson Education, 2009.

[50] Eswaramoorthi Nallusamy. A framework for using pro-
cessor cache as ram (car). University of New Mexico,
2005.

[51] OECD/EUIPO. Trends in trade in counterfeit and pi-
rated goods, illicit trade. Technical report, 2019.

[52] Lois Orosa et al. A deeper look into RowHammer‘s
sensitivities: Experimental analysis of real DRAM chips
and implications on future attacks and defenses. In
MICRO, 2021.

[53] Manuel Penz, Martina Zeinzinger, Michael Kargl, Flo-
rian Eibensteiner, Phillip Petz, and Josef Langer. Sram
pufs for device authentication on resource-constrained
systems. In 2025 9th International Conference on Cryp-
tography, Security and Privacy (CSP), pages 169–176,
2025. doi: 10.1109/CSP66295.2025.00035.

[54] Ugo Piazzalunga, Paolo Salvaneschi, Francesco Bal-
ducci, Pablo Jacomuzzi, and Cristiano Moroncelli. Secu-
rity strength measurement for dongle-protected software.
Security & Privacy, 5(6):32–40, 2007.

[55] Thomas Rokicki, Clémentine Maurice, and Michael
Schwarz. Cpu port contention without smt. In Vijayalak-
shmi Atluri, Roberto Di Pietro, Christian D. Jensen, and
Weizhi Meng, editors, Computer Security – ESORICS
2022, pages 209–228, Cham, 2022. Springer Nature
Switzerland. ISBN 978-3-031-17143-7.

[56] André Schaller, Wenjie Xiong, Nikolaos Athanasios
Anagnostopoulos, et al. Intrinsic rowhammer PUFs:
Leveraging the Rowhammer effect for improved secu-
rity. In HOST, 2017.

[57] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’19, page 753–768, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450367479. doi: 10.1145/3319535.3354252. URL
https://doi.org/10.1145/3319535.3354252.

[58] Boris Škorić, Pim Tuyls, and Wil Ophey. Robust key ex-
traction from physical uncloneable functions. In ACNS,
2005.

[59] Seonghun Son, Daniel Moghimi, and Berk Gulmezoglu.
Smack: Efficient instruction cache attacks via self-
modifying code conflicts. In Proceedings of the 30th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Volume 2, page 1107–1123, New York, NY, USA,
2025. Association for Computing Machinery. ISBN
9798400710797. URL https://doi.org/10.1145/
3676641.3716274.

16

https://doi.org/10.1145/3230833.3233256
https://learn.microsoft.com/en-us/windows/security/hardware-security/how-hardware-based-root-of-trust-helps-protect-windows
https://learn.microsoft.com/en-us/windows/security/hardware-security/how-hardware-based-root-of-trust-helps-protect-windows
https://learn.microsoft.com/en-us/windows/security/hardware-security/how-hardware-based-root-of-trust-helps-protect-windows
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3676641.3716274
https://doi.org/10.1145/3676641.3716274

[60] G Edward Suh and Srinivas Devadas. Physical unclon-
able functions for device authentication and secret key
generation. In DAC, 2007.

[61] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and
Herbert Bos. TLB;DR: Enhancing TLB-based at-
tacks with TLB desynchronized reverse engineer-
ing. In 31st USENIX Security Symposium (USENIX
Security 22), pages 989–1007, Boston, MA, August
2022. USENIX Association. ISBN 978-1-939133-
31-1. URL https://www.usenix.org/conference/
usenixsecurity22/presentation/tatar.

[62] Fatemeh Tehranipoor, Nima Karimian, Kan Xiao, and
John Chandy. Dram based intrinsic physical unclon-
able functions for system level security. In Proceed-
ings of the 25th Edition on Great Lakes Symposium on
VLSI, GLSVLSI ’15, page 15–20, New York, NY, USA,
2015. Association for Computing Machinery. ISBN
9781450334747. doi: 10.1145/2742060.2742069. URL
https://doi.org/10.1145/2742060.2742069.

[63] Flavio Toffalini, Martín Ochoa, Jun Sun, and Jiany-
ing Zhou. Careful-packing: A practical and scalable
anti-tampering software protection enforced by trusted
computing. In Proceedings of the Ninth ACM Confer-
ence on Data and Application Security and Privacy,
CODASPY ’19, page 231–242, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450360999. doi: 10.1145/3292006.3300029. URL
https://doi.org/10.1145/3292006.3300029.

[64] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue
in-flight data load. In 2019 IEEE Symposium on Se-
curity and Privacy (SP), pages 88–105, 2019. doi:
10.1109/SP.2019.00087.

[65] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. Cacheout: Leaking
data on intel cpus via cache evictions. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 339–
354, 2021. doi: 10.1109/SP40001.2021.00064.

[66] VDMA. VDMA study product piracy
2022. Technical report, 2022. URL https:
//www.vdma.org/documents/34570/51629660/
VDMA+Study+Product+Piracy+2022_final.pdf.

[67] Pepe Vila, Boris Köpf, and José F. Morales. Theory
and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 39–54,
2019. doi: 10.1109/SP.2019.00042.

[68] Henry Wong. Intel Ivy Bridge cache replacement policy,
jan 2013. URL http://blog.stuffedcow.net/2013/

01/ivb-cache-replacement/. Accessed: 2025-10-
26.

[69] Wenjie Xiong, André Schaller, Stefan Katzenbeisser,
and Jakub Szefer. Software protection using dynamic
PUFs. IEEE Transactions on Information Forensics and
Security, 15, 2019.

[70] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Torrel-
las. Attack directories, not caches: Side channel attacks
in a non-inclusive world. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 888–904, 2019. doi:
10.1109/SP.2019.00004.

[71] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, l3 cache Side-Channel
attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732, San Diego,
CA, August 2014. USENIX Association. ISBN
978-1-931971-15-7. URL https://www.usenix.org/
conference/usenixsecurity14/technical-
sessions/presentation/yarom.

[72] Martina Zeinzinger, Josef Langer, Florian Eibensteiner,
Phillip Petz, Lucas Drack, Daniel Dorfmeister, and
Rudolf Ramler. Comparative analysis of sram puf tem-
perature susceptibility on embedded systems. In 2023
International Conference on Electrical, Computer and
Energy Technologies (ICECET), pages 1–8, 2023. doi:
10.1109/ICECET58911.2023.10389242.

[73] Dimitrios Ziakas, Allen Baum, Robert A. Maddox, and
Robert J. Safranek. Intel® quickpath interconnect ar-
chitectural features supporting scalable system archi-
tectures. In 2010 18th IEEE Symposium on High
Performance Interconnects, pages 1–6, 2010. doi:
10.1109/HOTI.2010.24.

17

https://www.usenix.org/conference/usenixsecurity22/presentation/tatar
https://www.usenix.org/conference/usenixsecurity22/presentation/tatar
https://doi.org/10.1145/2742060.2742069
https://doi.org/10.1145/3292006.3300029
https://www.vdma.org/documents/34570/51629660/VDMA+Study+Product+Piracy+2022_final.pdf
https://www.vdma.org/documents/34570/51629660/VDMA+Study+Product+Piracy+2022_final.pdf
https://www.vdma.org/documents/34570/51629660/VDMA+Study+Product+Piracy+2022_final.pdf
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Introduction
	Background
	CPU Caches
	Physically Unclonable Functions
	Physical Memory Aliasing: BadRAM

	Threat Model
	Design & Protection
	Base Operations
	Protections: Static Image and Memory
	Protections: Caches

	Implementation
	Evaluation
	Discussion
	Preloader Vulnerabilities
	Microarchitectural Attacks
	Practicality
	Rowhammer

	Related Work
	Conclusion

