
Automated Synthesis of Instruction-Centric Leakage Contracts
Elvira Moreno

IMDEA Software Institute
Universidad Politécnica de Madrid

Tiziano Marinaro
CISPA Helmholtz Center for Information Security

Saarland University

Ryan Williams
Northeastern University

Marco Patrignani
University of Trento

Roberto Guanciale
KTH Royal Institute of Technology

Hamed Nemati
KTH Royal Institute of Technology

Marco Guarnieri
IMDEA Software Institute

1 Introduction

Side-channel attacks exploit variations in processor behavior—
such as execution timing or cache access patterns [1,2,7] —to
infer sensitive information from otherwise secure software.
To defend against such attacks, programmers need to reason
about a CPU’s microarchitecture. However, the Instruction Set
Architecture (ISA)—the traditional abstraction layer between
software and hardware—lacks microarchitectural details.

Leakage contracts [3] augment the Instruction Set Architec-
ture (ISA) with a specification of all observable side-channel
leaks within a CPU. This enables secure system development
since programmers are made aware of the exploitable side-
channels that are traditionally obscured at the ISA level. Un-
fortunately, constructing leakage contracts for modern CPUs
is a complex task: it requires extensive reverse engineering,
expert knowledge, and significant time investment [4], mak-
ing it impractical to apply across the diverse landscape of
commercially available CPUs.

To address this issue, we propose a contract synthesis meth-
odology for automatically synthesizing instruction-centric
leakage contracts based on hardware observations extracted
from a black-box CPU. For this, we adopt a counterexample-
driven synthesis method that refines candidate contracts based
on observed hardware behavior. Our methodology ensures
that the synthesized contract is sound, i.e., it captures all leaks
exposed during testing. We implement our methodology in
a tool called MALCOS (MicroArchitectural Leakage COn-
tract Synthesizer). MALCOS incrementally builds instruction-
centric leakage contracts that capture leaks in a given black-
box CPU. While MALCOS targets x86 and ARM architectures,
the approach is general and can be adapted to other CPUs.

2 Overview

We now present the core aspects of MALCOS with an example.
Example 2.1 (A simple CPU and an attacker). Consider a
processor CPU that implements a simple register file com-
pression (RFC) optimization [9]. This optimization reduces

the physical size of the register file by mapping all logical
registers that store the value 0 to the same physical zero
register. As pointed out in [9], this optimization can result in
timing leaks (due to reducing the pressure on the register file).

Throughout this section we consider a microarchitectural
attacker ATK that can precisely observe whenever RFC
happens during execution. Hence, ATK can distinguish the
program executions associated with the following example
consisting of a program p and two initial states σ1,σ2:
p := MOV rax,rbx σ1 :=(rbx 7→ 0) σ2 :=(rbx 7→ 1)
Here, the program p consists of an instruction assigning to
register rax the value of register rbx, where the value of rbx
is 0 in initial state σ1 and a value different from 0 in initial
state σ2. Therefore, RFC happens when executing p from
σ1, but does not happen when executing p from σ2, which
results in different hardware traces for ATK.

However, ATK cannot distinguish the program executions
associated with the following example consisting of the same
program p and two different initial states σ3,σ4:
p := MOV rax,rbx σ3 :=(rbx 7→ 1) σ4 :=(rbx 7→ 3)
In this case, the values of register rbx are both different from
0, resulting in the same hardware traces.

To capture ISA-level leaks, a leakage contract augments the
ISA with a specification of the observable side-channel leaks
associated with a given CPU. It maps each (architectural)
program execution to a leakage trace, i.e., a sequence of (ISA-
level) observations exposing potentially leaked information.
In MALCOS, a contract is a set of clauses cl := ex IF pr,
where ex specifies what is added to the leakage trace and a
predicate pr modeling when the clause is enabled, i.e., when
the observation is added to the trace.

Figure 1 depicts MALCOS’s approach for the synthesis of
leakage contracts. The approach takes as input a black-box
processor CPU and it iteratively constructs a candidate leak-
age contract cand by alternating between two phases: (1) a
leakage testing phase (Checker in Figure 1) where MAL-
COS attempts at finding new leaks in CPU not captured by
cand (capturing all leaks discovered so far), and (2) a con-

1



CPU

{cex, pex}

(new leaks)

(no new leaks)

constraints generation

clauses 
refinementx

new_cand

contract unification

contract minimization

learned 
contract

x

CH
EC

KE
R

REFINER

CONTRACT POSTPROCESSOR

Figure 1: MALCOS contract synthesis process

tract refinement phase (Refiner in Figure 1) where MALCOS
updates cand to account for a newly discovered leak.

When MALCOS cannot find new leaks, it simplifies the con-
tract cand (Postprocessor in Figure 1), which is returned
to the user. Next, we provide further details on each phase.

Leakage testing phase. The Checker takes a candidate
contract cand and a CPU (treated as a black-box), and tries
to discover leaks not yet captured by cand. Intuitively, the
Checker executes programs and observes leaks w.r.t. a given
attacker ATK. When it finds a new leak, it returns a counterex-
ample cex, which is a sequence of instructions and a pair of
initial states that yield the same leakage trace under cand but
different hardware traces, i.e., distinguishable by ATK. It also
returns positive examples pex, i.e., test cases indistinguishable
for both the contract and the attacker.

Contract refinement phase. The Refiner takes a coun-
terexample cex describing a newly-discovered leak, and it
generates a new contract clause that captures the new leak,
i.e., the new clause must distinguish the counterexample. Ad-
ditionally, the Refiner can take positive examples pex, i.e.,
test cases that are indistinguishable for both the contract and
the microarchitectural attacker, to guide the generation of the
contract clause by informing it about which executions should
not be distinguished by the synthesized clause. This clause is
then added to the original contract to generate a new candidate
contract new_cand. The Refiner discovers such a contract
clause as a syntax-driven synthesis task implemented on top
of the Rosette solver [8].

Example 2.2. Consider the processor CPU and attacker ATK
from Example 2.1. Starting from an empty candidate contract
(cand = /0), the Checker attempts to discover a leak. For
this, the Checker generates test cases, each one consisting
of a program and a pair of initial states, executes them on
the target CPU, and computes the hardware traces to detect
potential leaks. Given that cand= /0, the Checker discovers
the test case (p,σ1,σ2) as a counterexample, and the test case
(p,σ3,σ4) as a positive example.

The Refiner analyses the counterexample and the positive
example to generate a clause capturing the leak. It uses the
Rosette solver to identify a new clause cl of the form ex IF pr
that distinguishes executions of p from σ1 and σ2 but not
distinguishes executions of p from σ3 and σ4. This yields cl1

x86-64 Subset Mem. Ctrl. rep Div.
addr. flow counter by 0

cond: Conditional branches ✓ ✓ × ×
strn: String operations ✓ × ✓ ×
dmul: Division and mult. ✓ × × ✓
logi: Logical operations ✓ × × ×
cmov: Conditional moves ✓ × × ×

Table 1: Selection of the x86-64 synthesis campaign. ✓ means
that MALCOS synthesized a clause capturing leaks associated
with the corresponding leakage source; the absence of clauses
associated with the leakage source is marked with ×.

bellow, which exposes when the first operand is a register and
it is written with a value 0.
cl1 := post-operand-value 0 IF [(operand-type 0 = reg)

and (operand-access 0 = write)

and (post-operand-value 0 = 0)]

Finally, the Refiner adds the newly-discovered cl1 to the
candidate contract cand. This process iterates, i.e., check-
ing and refining to discover leaks not yet captured, until no
further leaks are found. Afterwards, MALCOS invokes the
Postprocessor to minimize the contract by unifying dif-
ferent clauses and by reducing the number of unnecessary
clauses to simplify the final contract.

3 Preliminary Evaluation

In the evaluation we investigate whether MALCOS can learn
contracts from actual hardware by using it to synthesize con-
tracts for the x86 and ARM architectures.

x86. We target an Intel i5-6500 CPU, and we synthesized
contracts for 13 subsets of the x86 ISA using REVIZOR [6] as
Checker. For each ISA subset, we run the synthesis loop for
24 hours. Table 1 shows a selection of the results of our cam-
paign. We highlight the following: (1) for all subsets, MALCOS
synthesized clauses capturing leaks through the data cache;
(2) for the cond subset (the only one including control-flow
statements), MALCOS synthesized clauses exposing con-
trol-flow leaks; (3) for the div subset, MALCOS synthesizes
clauses exposing the divisor operand. (4) and for the strn
subset, MALCOS synthesize clauses exposing the rep counter
which determines how many times an instruction is repeated.
Overall, the contracts are aligned with the community’s un-
derstanding of instruction-level leaks in the analyzed CPU.

ARM. We target a Raspberry Pi4 with a Cortex-A72 CPU,
and we synthesized contracts associated with ARM memory
instructions using SCAM-V [5] as Checker. The synthesized
clauses (after postprocessing) expose the tag and index bits
associated with individual memory loads and stores, in ad-
dition to clauses associated with the LDP, LDPSW, and STP
instructions, which access two 32-bit words or two 64-bit
doublewords from memory at the same time.

2



References

[1] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven Cache
Attacks on AES (Short Paper). In Proceedings of the 8th
International Conference on Information and Communi-
cations Security, ICICS, pages 112–121. Springer-Verlag,
2006.

[2] Samira Briongos, Pedro Malagon, Jose M. Moya, and
Thomas Eisenbarth. Reload+refresh: Abusing cache re-
placement policies to perform stealthy cache attacks. In
29th USENIX Security Symposium (USENIX Security 20),
pages 1967–1984. USENIX Association, August 2020.

[3] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila.
Hardware-software contracts for secure speculation. In
2021 IEEE Symposium on Security and Privacy (SP),
pages 1868–1883. IEEE, 2021.

[4] Jana Hofmann, Emanuele Vannacci, Cédric Fournet,
Boris Köpf, and Oleksii Oleksenko. Speculation at
fault: Modeling and testing microarchitectural leakage of
CPU exceptions. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 7143–7160, 2023.

[5] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto
Guanciale, and Swen Jacobs. Validation of abstract side-
channel models for computer architectures. In Computer
Aided Verification - 32nd International Conference, CAV
2020 Los Angeles, CA, USA, July 21-24, 2020.

[6] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark
Silberstein. Revizor: Testing black-box cpus against
speculation contracts. In Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
226–239, 2022.

[7] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of AES. In Pro-
ceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, CT-RSA’06,
page 1–20, Berlin, Heidelberg, 2006. Springer-Verlag.

[8] Emina Torlak and Rastislav Bodik. Growing solver-aided
languages with rosette. In Proceedings of the 2013 ACM
international symposium on New ideas, new paradigms,
and reflections on programming & software, pages 135–
152, 2013.

[9] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nan-
deeka Nayak, Caroline Trippel, Adam Morrison, David
Kohlbrenner, and Christopher W Fletcher. Opening pan-
dora’s box: A systematic study of new ways microarchi-
tecture can leak private data. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 347–360. IEEE, 2021.

3


	Introduction
	Overview
	Preliminary Evaluation

