
Talk: Debugging the Un-Debuggable: Advanced Debugging Techniques for
Microarchitectural Security Tooling

Anna Pätschke
University of Luebeck

Daan Vanoverloop
DistriNet, KU Leuven

Jan Wichelmann
University of Luebeck

Jo Van Bulck
DistriNet, KU Leuven

Abstract
System security research often involves the development of
custom code for building program analysis tools or imple-
mentation of side-channel leakage mitigations. In various
cases, those specialized contexts also render the usage of con-
ventional debugging tools, such as GDB or integrated IDE
debuggers, unusable. Examples for this are the development
of code that runs on specialized hardware platforms, such
as the Proteus RISC-V core, where debugging must be con-
ducted by analyzing low-level hardware signal traces rather
than using interactive support, or when custom binary instru-
mentation or hardware protection like Intel SGX interferes
with the debugger’s operation. Therefore, the aforementioned
cases demand new debugging strategies.

In this talk, we present various ways to trace programs at
runtime and collect data in a unified format. We furthermore
discuss how this data can be used for offline analysis to re-
store debugging functionality that was lost, or use it to check
the security and conformance of programs. While we focus
on the examples used throughout our projects in this talk, they
represent only a fraction of possible solutions. This talk is
intended to also spark further discussion about other tools
and techniques, from small self-written scripts to best prac-
tices for leveraging larger, mature analysis frameworks. All
proposed tooling is collected in a publicly available GitHub
repository1.

1 Beyond Breakpoints: A Deep Dive into Un-
conventional Debugging Techniques

The field of system security involves a wide range of research
areas including the development of side-channel analysis
tools, building hardening or verification frameworks, or find-
ing attack vectors. All those areas also include the need for
bug finding during the development of tooling. Another com-
mon theme among those tasks is the need for deep program

1https://github.com/syssec-debugging-tools/catalog

manipulation. These research tasks often include writing soft-
ware that operates far outside the bounds of typical software
development, e.g., through binary instrumentation, modifica-
tion of kernels, or prototyping hardware security extensions
on custom RISC-V cores like Proteus [1]. Those tasks fre-
quently preclude the use of traditional debugging tools.

For example, during development of compile-time side-
channel mitigations, broken programs may be generated due
to buggy transformation during or after compilation. To debug
such issues, being able to step through the program, jump to
breakpoints and observe register values is helpful to pinpoint
the issue. However, this is not possible when using academic
RISC-V cores that don’t include a debug interface, or when
the instrumentation interferes with the debugger.

A different use case is when debugging is disabled by de-
sign, for example, on Intel SGX production enclaves. Using
side-channel leakage and temporal control through interrupts
and page faults to restore some debugging functionality can
help foster attack research, and analysis of side-channel leak-
age can help validate the efficacy of mitigations [5].

When conventional debugging fails, researchers need to
find alternative strategies, which often includes writing new
tooling for debugging purposes. To limit the time spent on
that and foster shared knowledge, we introduce a collection
of debugging techniques we have repeatedly used and refined
across research projects.

The debugging process involves two distinct phases: gen-
erating data and analyzing data (see Fig. 1). Data generation
and tracing can range from extracting low-level hardware
signals, to software-level execution traces generated with dy-
namic binary instrumentation frameworks like Intel Pin [3].
We offer a systematic approach for unifying different infor-
mation (trace) sources within an established shared format.
For that, we choose to convert the collected data to Value
Change Dump (VCD) files, a file format commonly used in
hardware design to represent low-level hardware signals. This
allows us to reuse existing open-source analysis tools, such
as GTKWave and wellen. The data analysis tasks include a)
conformance, does the program (or tool) behave as intended

1

https://orcid.org/0000-0001-7828-2333
https://orcid.org/0009-0006-4914-9801
https://orcid.org/0000-0002-5748-5462
https://orcid.org/0000-0002-5953-9196
https://github.com/syssec-debugging-tools/catalog


Verilator SGX-Step QEMU Pintool

GTKWave Interactive Debugger Non-Interference Check Conformance Check

Tracing

Analysis

VCD: Shared Format

Figure 1: Overview of different stages of the adjusted debug-
ging process: Tracing output gets converted into a shared
format and is then passed on into different analysis modules.
Shortcuts from specific trace formats to analysis modules are
enabled where possible (as shown by the dotted gray boxes).

or does the transformed program produce the same semantic
results as the original; and b) non-interference [2], are the
observations leaked by the transformed program independent
of its secret inputs?

1.1 Generating Data: Different Tracers

Pinpoint: pintool-based tracer. A versatile pintool that
can trace x86-programs even if they contain int3 instructions
or other features that are incompatible with debuggers. Its fea-
tures can be activated on demand and include tracing memory
writes, register states, system calls, function arguments, and
instruction counts and opcodes. To manage the data volume, it
can be configured to trace only interesting functions or offsets,
or skip a specified number of instructions.

Fast QEMU-based tracer. For full-system analysis, we lever-
age QEMU2. This tool hooks into the Tiny Code Generator
(TCG) internals to enable lightweight, high-performance trac-
ing of guest executions.

Strace debugging. A simple but effective hack for exfiltrating
data when other methods fail. By instrumenting the target to
perform a system call with many unused parameters, we can
pack arbitrary register values into the syscall’s arguments
and read them from the tracer. Similarly, sgx-tracer3 uses
ptrace to intercept enclave loading and dump memory.

Verilator tracer. Custom processor cores written in Hardware
Description Languages (HDLs) like SystemVerilog can be
compiled using Verilator4, a tool to generate cycle-accurate
simulators. These simulators can be configured to emit VCD
files that describe the changes of both architectural and mi-
croarchitectural state of the core throughout the execution. In
this talk we focus on Proteus [1], an extensible RISC-V core
for prototyping hardware extensions.

2https://www.qemu.org/
3https://github.com/pandora-tee/sgx-tracer
4https://www.veripool.org/verilator/

SGX-Step-based tracer. To help with attack research on
Intel SGX enclaves, a tracing tool based on the SGX-Step
framework [4] extracts page-granular memory accesses from
an enclave at maximal temporal resolution. The resulting data
can be analyzed with interactive tools, or by programmatically
correlating leakage patterns to input data [5].

1.2 Analyzing Data: Processing Tools

GTKWave. Without any additional processing, VCD traces
can already be analyzed in detail using a waveform viewer
like GTKWave. However, pinpointing specific leakages or
bugs is hindered by the level of detail provided.

Interactive debugger. A common problem with static VCD
traces is the loss of interactivity. We present how low-
level hardware traces can be converted from a pure feature-
rich GTKWave notion to an accessible debugger-like walk-
through of the program. Similar to record-and-replay ap-
proaches taken by other tools, this restores the feel of a stan-
dard debugger, but on offline data. This is especially useful
when matching low-level traces with the corresponding in-
structions in the disassembled binary of the source program.

Conformance checks. Checking the semantic conformance
of a new implementation or an instrumented version of an im-
plementation is done by measuring differences to the expected
outcome. On a low level, this includes the comparison of mem-
ory accesses, register values, and other (micro)architectural
states to reason about invariants that should hold.

Non-interference checks. When implementing side-channel
mitigations, we not only need to verify the conformance of
the mitigation, but also its efficacy. We generate traces for
the same program with different secret inputs, and check for
differences in the attacker-observable signals to ensure the
absence of side-channel leakage.

References
[1] M. Bognar et al. Proteus: An Extensible RISC-V Core for Hardware

Extensions. In RISC-V Summit Europe, 2023.

[2] D. Denning and P. Denning. Certification of Programs for Secure Infor-
mation Flow. Commun. ACM, 1977.

[3] C. Luk et al. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLDI, 2005.

[4] J. Van Bulck et al. SGX-Step: A Practical Attack Framework for Precise
Enclave Execution Control. In SysTEX, 2017.

[5] D. Vanoverloop et al. TLBlur: Compiler-Assisted Automated Hardening
against Controlled Channels on Off-the-Shelf Intel SGX Platforms. In
USENIX Security, 2025.

Acknowledgements. This work was partially supported
by the Research Fund KU Leuven, and the Cybersecurity
Research Program Flanders, and by Deutsche Forschungsge-
meinschaft (DFG) through the ReTEE project.

2

https://www.qemu.org/
https://github.com/pandora-tee/sgx-tracer
https://www.veripool.org/verilator/

	Beyond Breakpoints: A Deep Dive into Unconventional Debugging Techniques
	Generating Data: Different Tracers
	Analyzing Data: Processing Tools


