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I. INTRODUCTION

Modern processors expose explicit cache control instruc-
tions such as CLFLUSH, CLFLUSHOPT, and CLWB to enable
software-driven cache management. These instructions are
essential in legitimate domains such as direct memory access
(DMA), memory-mapped I/O, and persistent memory, where
explicit coherence and ordering control are required.

However, these same instructions have been exploited to
mount cache-based side-channel attacks. In particular, the
Flush+Flush attack [1] (illustrated in Fig. 1) leverages the
deterministic latency of CLFLUSH to infer whether a cache
line was recently accessed by a victim. The attacker flushes
a shared cache line, waits, and then flushes it again while
measuring the latency of the second flush. A lower latency
indicates that the victim accessed the line and brought it into
the cache, revealing fine-grained memory activity.

Such deterministic timing behavior also enables attacks
such as Flush+Reload and RowHammer-style fault injections.
By observing flush completion latency, attackers can infer
sensitive access patterns even across cores or virtual machines,
making CLFLUSH a powerful primitive for timing-based in-
formation leakage.

A. Motivation

Despite the known risks, disabling CLFLUSH entirely is
impractical. It remains essential to a wide range of system
software stacks, including kernel subsystems, persistent mem-
ory management, and device drivers. Therefore, a practical
defense must preserve the correctness and ordering guarantees
of CLFLUSH while removing its exploitable determinism.

B. Limitations of State-of-the-Art

Existing mitigation strategies exhibit significant drawbacks:

o Instruction Restriction: Microcode-level filtering or
privilege elevation for CLFLUSH (as proposed in some
OS kernels) blocks side channels but breaks backward
compatibility for user-space libraries that depend on
direct cache management.

o Timer Obfuscation: Methods such as TimeCache [3]
and CacheNoise introduce delay jitter to reduce timing
precision. However, since these act externally to the flush
instruction, the instruction’s latency remains statistically
distinguishable under repeated probing.
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« Hardware Randomization: Defenses like InvisiSpec [4]
and SafeFlush [5] integrate internal cache randomization
or speculative shielding. While effective, they incur high
area and latency overheads, often exceeding 10%.

The key limitation across these approaches is that they treat
timing noise as a uniform or global source of randomness.
In contrast, an attacker only needs local repeatability to
exploit CLEFLUSH—thus global jitter is insufficient. A defense
must instead bind unpredictability to each invocation of the
instruction itself.

C. Key Insight

We identify that the vulnerability of CLFLUSH arises from
its deterministic microarchitectural completion path rather than
from its eviction semantics. Our key insight is that coupling
each flush with a unique, local, and transient entropy value
can retain its correctness while eliminating predictable timing
signatures. By introducing bounded randomness within the
flush pipeline—without affecting coherence guarantees—we
can effectively decouple the attacker’s observation window
from the cache’s internal behavior.

D. Contributions

This work introduces Entropy-Coupled CLFLUSH, a
novel redesign of the cache flush mechanism with the fol-
lowing contributions:

e A new entropy-coupled execution model for CLEFLUSH
that introduces microarchitectural randomness directly at
the cache controller level.

e A formal timing-independent flush completion model
ensuring that the entropy injection does not affect cache
coherence or ordering semantics.

II. THREAT MODEL AND OVERVIEW

We consider an attacker with unprivileged user-space access
who can execute CLEFLUSH on shared physical pages and
measure latency using high-resolution timers such as rdtsc.
The attacker’s objective is to differentiate cache-resident and
non-resident data through timing analysis or to repeatedly
hammer a DRAM row via flush-induced activation patterns.

The defender (ECF) seeks to ensure that the flush latency
and cache traversal behavior observed by any software agent
are statistically indistinguishable regardless of cache state.
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Fig. 1. Flush+Flush attack. In Case II, the second FLUSH takes longer due
to a cache hit.
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Fig. 2. Flowchart of the proposed Entropy-Coupled CLFLUSH (ECF)

mechanism. The EGU generates entropy per invocation, which modulates both
delay and cache traversal order to eliminate deterministic timing channels.

ECF guarantees that no measurable correlation exists between
flush completion time and target cacheline status.

III. DESIGN OF ENTROPY-COUPLED CLFLUSH (ECF)

ECF extends the cache controller logic with a lightweight
entropy generation unit (EGU) based on a linear feedback shift
register (LFSR) seeded by dynamic microarchitectural signals
such as bus contention, prefetch queue occupancy, and thermal
counters. This entropy is consumed per invocation of the flush
instruction (refer Fig. 2).

The ECF pipeline operates in three stages:

1) Entropy Generation: When a CLFLUSH is decoded,
the EGU produces an entropy token FE; unique to that
instruction instance.

2) Delay Modulation: A small, bounded delay J(E})
(typically 2—15 cycles) is added before issuing the flush
acknowledgment, ensuring the instruction’s completion
time varies pseudo-randomly.

3) Randomized Set Traversal: For each targeted set, the
cache controller traverses ways in a permuted order
defined by E,, breaking deterministic access patterns.

The delay is tightly bounded to preserve memory ordering
guarantees. All coherence and write-back semantics remain
identical to the baseline design.

IV. SECURITY ANALYSIS

We model the adversary’s observation of a flush invocation
as a random variable A. Let S € {0,1} represent whether
a target cache line is resident (S = 1) or not (S = 0). In
our scheme each flush produces a randomized latency A and
possibly randomized scope U, both drawn from distributions
independent of S. The observed time is then

A:Tbase+A+N7

where Ti.g is the deterministic flush component and N is
measurement noise.
Assumption 1. A and U are independent of S.
Assumption 2. The adversary only obtains A; internal entropy
state is hidden.

Under these assumptions the flush observation satisfies the
Markov chain

S = (AU) —» A,

and by the data-processing inequality we get
I(S;A) < I(S;A,U) =0.

Thus the mutual information between the secret state and
the adversary’s observation is zero: the adversary gains no
information about S from a single flush.

From a hypothesis-testing perspective, let Pjs—o and
P4|s=1 denote the distributions of A conditioned on .S = 0 or
1. Since A and U are identically distributed and independent
of S, it follows P4js—o = P4|s=1. The total variation distance
between the two distributions is zero, implying the adversary’s
distinguishing advantage is also zero.

Hence even after repeated sampling the adversary cannot
distinguish the two states better than random guessing. In other
words, the flush instruction no longer provides a usable timing
oracle.

Discussion. The analysis depends crucially on hiding the
entropy generator state and ensuring that A is genuinely inde-
pendent of cache residency. If either is violated (for example
through leakage of RNG state or side channels correlating
A — 5), then the guarantee degrades. Our design mitigates
these risk vectors by drawing entropy from microarchitectural
sources not influenced by single-line residency, and by isolat-
ing the entropy path from user-accessible state.

V. CONCLUSION AND ONGOING WORK

Entropy-Coupled CLFLUSH addresses a long-standing mi-
croarchitectural vulnerability by embedding entropy directly
into cache flush execution. Unlike prior noise-based or restric-
tive approaches, ECF preserves the full semantics and compat-
ibility of the instruction while eliminating deterministic timing
behavior. Our ongoing work focuses on hardware prototyping,
adaptive entropy calibration based on workload sensitivity, and
integration into emerging NVRAM-aware systems. This study
underscores the potential of entropy-driven hardware design as
a general security primitive for microarchitectural hardening.
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